Do you want to publish a course? Click here

Ferroelectric atomic displacement in multiferroic tetragonal perovskite Sr$_{1/2}$Ba$_{1/2}$MnO$_3$

79   0   0.0 ( 0 )
 Added by Daisuke Okuyama
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the crystal structure in multiferroic tetragonal perovskite Sr$_{1/2}$Ba$_{1/2}$MnO$_3$ with high accuracy of the order of 10$^{-3}$ Angstrom for an atomic displacement. The large atomic displacement for Mn ion from the centerosymmetric position, comparable with the off-centering distortion in the tetragonal ferroelectric BaTiO$_3$, is observed in the ferroelectric phase ($T_mathrm{N}$ $leq$ $T$ $leq$ $T_mathrm{C}$). In stark contrast, in the multiferroic phase ($T$ $leq$ $T_mathrm{N}$), the atomic displacement for Mn ion is suppressed, but those for O ions are enlarged. The atomic displacements in the polar crystal structures are also analyzed in terms of the ferroelectric modes. In the ferroelectric phase, the atomic displacements are decomposed into dominant positive Slater, negative Last, and small positive Axe modes. The suppression of Slater and Last modes, the sign change of Last mode, and the enlargement of Axe mode are found in the multiferroic phase. The ferroelectric distortion is well reproduced by a first-principles calculation based on Berry phase method, providing an additional information on competing mechanisms to induce the polarization, electronic $p$-$d$ hybridization vs. magnetic exchange-striction.



rate research

Read More

With a combined ab initio density functional and model Hamiltonian approach we establish that in the recently discovered multiferroic phase of the manganite Sr$_{1/2}$Ba$_{1/2}$MnO$_{3}$ the polar distortion of Mn and O ions is stabilized via enhanced in-plane Mn-O hybridizations. The magnetic superexchange interaction is very sensitive to the polar bond-bending distortion, and we find that this dependence directly causes a strong magnetoelectric coupling. This novel mechanism for multiferroicity is consistent with the experimentally observed reduced ferroelectric polarization upon the onset of magnetic ordering.
Thin films of perovskite oxides offer the possibility of combining emerging concepts of strongly correlated electron phenomena and spin current in magnetic devices. However, spin transport and magnetization dynamics in these complex oxide materials are not well understood. Here, we experimentally quantify spin transport parameters and magnetization damping in epitaxial perovskite ferromagnet/paramagnet bilayers of La$_{2/3}$Sr$_{1/3}$MnO$_3$/SrRuO$_3$ (LSMO/SRO) by broadband ferromagnetic resonance spectroscopy. From the SRO thickness dependence of Gilbert damping, we estimate a short spin diffusion length of $lesssim$1 nm in SRO and an interfacial spin-mixing conductance comparable to other ferromagnet/paramagnetic-metal bilayers. Moreover, we find that anisotropic non-Gilbert damping due to two-magnon scattering also increases with the addition of SRO. Our results demonstrate LSMO/SRO as a spin-source/spin-sink system that may be a foundation for examining spin-current transport in various perovskite heterostructures.
The Pr$_{0.50}$Sr$_{0.5}$0CoO$_3$ perovskite exhibits unique magnetostructural properties among the rest of ferromagnetic/metallic Ln$_{0.50}$Sr$_{0.50}$CoO$_3$ compounds. The sudden orthorhombic-tetragonal (Imma $to$ I4/mcm) structural transition produces an unusual magnetic behavior versus temperature and external magnetic fields. In particular, the symmetry change is responsible for a spontaneous spin rotation in this metallic oxide. We have studied half-doped Ln$_{0.50}$(Sr$_{1-x}$A$_x$)$_{0.50}$CoO$_3$ cobaltites varying the ionic radius rA of A-site cations (divalent cations and lanthanides) in order to complete the T-rA phase diagram. The influence of the structural distortion and the A-cations size for the occurrence of a spontaneous spin reorientation in the metallic state has been investigated. As the reorientation of the magnetization is driven by the temperature induced collapse of the orthorhombic distortion, a careful investigation of the structural symmetry is presented varying the structural distortion of the Sr-rich half-doped cobaltites by means of both compositional and temperature changes. The region in the phase diagram of these perovskites where the phase of magnetic symmetry Fmmm replaces that of Imma symmetry was determined in this family of ferromagnetic/metallic cobaltites. In that region the magnetization direction has rotated 45 degrees within the a-b plane with respect to the second.
We present a structural analysis of the substituted system (Ba$_{1-x}$Sr$_{x}$)CuSi$_{2}$O$_{6}$, which reveals a stable tetragonal crystal structure down to 1.5 K. We explore the structural details with lowtemperature neutron and synchrotron powder diffraction, room-temperature and cryogenic highresolution NMR, as well as magnetic- and specific-heat measurements and verify that a structural phase transition into the orthorhombic structure which occurs in the parent compound BaCuSi2O6, is absent for the x = 0.1 sample. Furthermore, synchrotron powder-diffraction patterns show a reduction of the unit cell for x = 0.1 and magnetic measurements prove that the Cu-dimers are preserved, yet with a slightly reduced intradimer coupling Jintra. Pulse-field magnetization measurements reveal the emergence of a field-induced ordered state, tantamount to Bose-Einsteincondensation (BEC) of triplons, within the tetragonal crystal structure of $I,4_{1}/acd$. This material offers the opportunity to study the critical properties of triplon condensation in a simple crystal structure.
A neutron scattering investigation of the magnetoelectric coupling in PbFe_{1/2}Nb_{1/2}O_{3} (PFN) has been undertaken. Ferroelectric order occurs below 400 K, as evidenced by the softening with temperature and subsequent recovery of the zone center transverse optic phonon mode energy (hbar Omega_{0}). Over the same temperature range, magnetic correlations become resolution limited on a terahertz energy scale. In contrast to the behavior of nonmagnetic disordered ferroelectrics (namely Pb(Mg,Zn)_{1/3}Nb_{2/3}O_{3}), we report the observation of a strong deviation from linearity in the temperature dependence of (hbar Omega_{0})^{2}. This deviation is compensated by a corresponding change in the energy scale of the magnetic excitations, as probed through the first moment of the inelastic response. The coupling between the short-range ferroelectric and antiferromagnetic correlations is consistent with calculations showing that the ferroelectricity is driven by the displacement of the body centered iron site, illustrating the multiferroic nature of magnetic lead based relaxors in the dynamical regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا