No Arabic abstract
Recent thermal-conductivity measurements evidence a magnetic-field-induced non-Abelian spin liquid phase in the Kitaev material $alpha$-$mathrm{RuCl}_{3}$. Although the platform is a good Mott insulator, we propose experiments that electrically probe the spin liquids hallmark chiral Majorana edge state and bulk anyons, including their exotic exchange statistics. We specifically introduce circuits that exploit interfaces between electrically active systems and Kitaev materials to `perfectly convert electrons from the former into emergent fermions in the latter---thereby enabling variations of transport probes invented for topological superconductors and fractional quantum Hall states. Along the way we resolve puzzles in the literature concerning interacting Majorana fermions, and also develop an anyon-interferometry framework that incorporates nontrivial energy-partitioning effects. Our results illuminate a partial pathway towards topological quantum computation with Kitaev materials.
We investigate the non-Abelian topological chiral spin liquid phase in the two-dimensional (2D) Kitaev honeycomb model subject to a magnetic field. By combining density matrix renormalization group (DMRG) and exact diagonalization (ED) we study the energy spectra, entanglement, topological degeneracy, and expectation values of Wilson loop operators, allowing for robust characterization. While the ferromagnetic (FM) Kitaev spin liquid is already destroyed by a weak magnetic field with Zeeman energy $H_*^text{FM} approx 0.02$, the antiferromagnetic (AFM) spin liquid remains robust up to a magnetic field that is an order of magnitude larger, $H_*^text{AFM} approx 0.2$. Interestingly, for larger fields $H_*^text{AFM} < H < H_{**}^text{AFM}$, an intermediate gapless phase is observed, before a second transition to the high-field partially-polarized paramagnet. We attribute this rich phase diagram, and the remarkable stability of the chiral topological phase in the AFM Kitaev model, to the interplay of strong spin-orbit coupling and frustration enhanced by the magnetic field. Our findings suggest relevance to recent experiments on RuCl$_3$ under magnetic fields.
We study $S=1$ spin liquid states on the kagome lattice constructed by Gutzwiller-projected $p_x+ip_y$ superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices $S$ and $T$, we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the $SO(3)_1$ (or, equivalently, $SU(2)_2$) field theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study we observe a topological phase transition from the NACSL to the $Z_2$ Abelian spin liquid.
The search for fractionalization in quantum spin liquids largely relies on their decoupling with the environment. However, the spin-lattice interaction is inevitable in a real setting. While the Majorana fermion evades a strong decay due to the gradient form of spin-lattice coupling, the study of the phonon dynamics may serve as an indirect probe of fractionalization of spin degrees of freedom. Here we propose that the signatures of fractionalization can be seen in the sound attenuation and the Hall viscosity. Despite the fact that both quantities can be related to the imaginary part of the phonon self-energy, their origins are quite different, and the time-reversal symmetry breaking is required for the Hall viscosity. First, we compute the sound attenuation due to a phonon scattering off of a pair of Majorana fermions and show that it is linear in temperature ($sim T$). We argue that it has a particular angular dependence providing the information about the spin-lattice coupling and the low-energy Majorana fermion spectrum. The observable effects in the absence of time-reversal symmetry are then analyzed. We obtain the phonon Hall viscosity term from the microscopic Hamiltonian with time-reversal symmetry breaking term. Importantly, the Hall viscosity term mixes the longitudinal and transverse phonon modes and renormalize the spectrum in a unique way, which may be probed in spectroscopy measurement.
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontaneously breaks time reversal symmetry but preserves other symmetries. There are two topologically distinct CSLs separated by a quantum critical point. Interestingly, vortex excitations in the topologically nontrivial (Chern number $pm 1$) CSL obey non-Abelian statistics.
We extend the scope of Kitaev spin liquids to non-Archimedean lattices. For the pentaheptite lattice, which results from the proliferation of Stone-Wales defects on the honeycomb lattice, we find an exactly solvable non-Abelian chiral spin liquid with spontaneous time reversal symmetry breaking due to lattice loops of odd length. Our findings call for potential extensions of exact results for Kitaev models which are based on reflection positivity, which is not fulfilled by the pentaheptite lattice. We further elaborate on potential realizations of our chiral spin liquid proposal in strained $alpha$-RuCl$_3$.