No Arabic abstract
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions. We discuss the possibility for such transitions to characterize interesting physical phenomena, as quantum phase transitions, or abrupt variations in the correlation distributions. We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain. We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
The development of spectroscopic techniques able to detect and verify quantum coherence is a goal of increasing importance given the rapid progress of new quantum technologies, the advances in the field of quantum thermodynamics, and the emergence of new questions in chemistry and biology regarding the possible relevance of quantum coherence in biochemical processes. Ideally, these tools should be able to detect and verify the presence of quantum coherence in both the transient dynamics and the steady state of driven-dissipative systems, such as light-harvesting complexes driven by thermal photons in natural conditions. This requirement poses a challenge for standard laser spectroscopy methods. Here, we propose photon correlation measurements as a new tool to analyse quantum dynamics in molecular aggregates in driven-dissipative situations. We show that the photon correlation statistics on the light emitted by a molecular dimer model can signal the presence of coherent dynamics. Deviations from the counting statistics of independent emitters constitute a direct fingerprint of quantum coherence in the steady state. Furthermore, the analysis of frequency resolved photon correlations can signal the presence of coherent dynamics even in the absence of steady state coherence, providing direct spectroscopic access to the much sought-after site energies in molecular aggregates.
It is known that if we can clone an arbitrary state we can send signal faster than light. Here, we show that deletion of unknown quantum state against a copy can lead to superluminal signalling. But erasure of unknown quantum state does not imply faster than light signalling.
Complexity measures are essential to understand complex systems and there are numerous definitions to analyze one-dimensional data. However, extensions of these approaches to two or higher-dimensional data, such as images, are much less common. Here, we reduce this gap by applying the ideas of the permutation entropy combined with a relative entropic index. We build up a numerical procedure that can be easily implemented to evaluate the complexity of two or higher-dimensional patterns. We work out this method in different scenarios where numerical experiments and empirical data were taken into account. Specifically, we have applied the method to i) fractal landscapes generated numerically where we compare our measures with the Hurst exponent; ii) liquid crystal textures where nematic-isotropic-nematic phase transitions were properly identified; iii) 12 characteristic textures of liquid crystals where the different values show that the method can distinguish different phases; iv) and Ising surfaces where our method identified the critical temperature and also proved to be stable.
A scheme for characterizing entanglement using the statistical measure of correlation given by the Pearson correlation coefficient (PCC) was recently suggested that has remained unexplored beyond the qubit case. Towards the application of this scheme for the high dimensional states, a key step has been taken in a very recent work by experimentally determining PCC and analytically relating it to Negativity for quantifying entanglement of the empirically produced bipartite pure state of spatially correlated photonic qutrits. Motivated by this work, we present here a comprehensive study of the efficacy of such an entanglement characterizing scheme for a range of bipartite qutrit states by considering suitable combinations of PCCs based on a limited number of measurements. For this purpose, we investigate the issue of necessary and sufficient certification together with quantification of entanglement for the two-qutrit states comprising maximally entangled state mixed with white noise and coloured noise in two different forms respectively. Further, by considering these classes of states for d=4 and 5, extension of this PCC based approach for higher dimensions d is discussed.
Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics. The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire probability distribution followed by a projective measurement. We investigate the complexity of adiabatically preparing such quantum states for the Gibbs distributions of various classical models including the Ising chain, hard-sphere models on different graphs, and a model encoding the unstructured search problem. By constructing a parent Hamiltonian, whose ground state is the desired quantum state, we relate the asymptotic scaling of the state preparation time to the nature of transitions between distinct quantum phases. These insights enable us to identify adiabatic paths that achieve a quantum speedup over classical Markov chain algorithms. In addition, we show that parent Hamiltonians for the problem of sampling from independent sets on certain graphs can be naturally realized with neutral atoms interacting via highly excited Rydberg states.