In this work we derive a new scheme to calculate Tomonaga-Luttinger liquid (TLL) parameters and holon (charge modes) velocities in a quasi-1D material that consists of two-leg ladders coupled through Coulomb interactions. Firstly, we obtain an analytic formula for electron-electron interaction potential along the conducting axis for a generalized charge distribution in a plane perpendicular to it. In the second step we introduce many-body screening that is present in a quasi-1D material. To this end we propose a new approximation for the charge susceptibility. Based on this we are able to find the TLLs parameters and velocities. We then show how to use these to validate the experimental ARPES data measured recently in p-polarization in $NbSe_3$. Although we focus our study on this specific material it is applicable for any quasi-1D system that consists of two-leg ladders as basic units.