The high harmonic spectrum of the Mott insulating Hubbard model has recently been shown to exhibit plateau structures with cutoff energies determined by $n$th nearest neighbor doublon-holon recombination processes. The spectrum thus allows to extract the on-site repulsion $U$. Here, we consider generalizations of the single-band Hubbard model and discuss the signatures of bosonic excitations in high harmonic spectra. Specifically, we study an electron-plasmon model which captures the essential aspects of the dynamically screened Coulomb interaction in solids and a multi-orbital Hubbard model with Hund coupling which allows to analyze the effect of local spin excitations. For the electron-plasmon model, we show that the high harmonic spectrum can reveal information about the screened and bare onsite interaction, the boson frequency, as well as the relation between boson coupling strength and boson frequency. In the multi-orbital case, string states formed by local spin excitations result in an increase of the radiation intensity and cutoff energy associated with higher order recombination processes.