No Arabic abstract
The Ophiuchus galaxy cluster exhibits a curious concave gas density discontinuity at the edge of its cool core. It was discovered in the Chandra X-ray image by Werner and collaborators, who considered a possibility of it being a boundary of an AGN-inflated bubble located outside the core, but discounted this possibility because it required much too powerful an AGN outburst. Using low-frequency (72-240 MHz) radio data from MWA GLEAM and GMRT, we found that the X-ray structure is, in fact, a giant cavity in the X-ray gas filled with diffuse radio emission with an extraordinarily steep radio spectrum. It thus appears to be a very aged fossil of the most powerful AGN outburst seen in any galaxy cluster ($pVsim 5times 10^{61}$ erg for this cavity). There is no apparent diametrically opposite counterpart either in X-ray or in the radio. It may have aged out of the observable radio band because of the cluster asymmetry. At present, the central AGN exhibits only a weak radio source, so it should have been much more powerful in the past to have produced such a bubble. The AGN is currently starved of accreting cool gas because the gas density peak is displaced by core sloshing. The sloshing itself could have been set off by this extraordinary explosion if it had occurred in an asymmetric gas core. This dinosaur may be an early example of a new class of sources to be uncovered by low-frequency surveys of galaxy clusters.
We detect a new suspected giant radio galaxy (GRG) discovered by KAT-7. The GRG core is identified with the WISE source J013313.50-130330.5, an extragalactic source based on its infrared colors and consistent with a misaligned AGN-type spectrum at $zapprox 0.3$. The multi-$ u$ spectral energy distribution (SED) of the object associated to the GRG core shows a synchrotron peak at $ u approx 10^{14}$ Hz consistent with the SED of a radio galaxy blazar-like core. The angular size of the lobes are $sim 4 ^{prime}$ for the NW lobe and $sim 1.2 ^{prime}$ for the SE lobe, corresponding to projected linear distances of $sim 1078$ kpc and $sim 324$ kpc, respectively. The best-fit parameters for the SED of the GRG core and the value of jet boosting parameter $delta =2$, indicate that the GRG jet has maximum inclination $theta approx 30$ deg with respect to the line of sight, a value obtained for $delta=Gamma$, while the minimum value of $theta$ is not constrained due to the degeneracy existing with the value of Lorentz factor $Gamma$. Given the photometric redshift $z approx 0.3$, this GRG shows a core luminosity of $P_{1.4 GHz} approx 5.52 times 10^{24}$ W Hz$^{-1}$, and a luminosity $P_{1.4 GHz} approx 1.29 times 10^{25}$ W Hz$^{-1}$ for the NW lobe and $P_{1.4 GHz} approx 0.46 times 10^{25}$ W Hz$^{-1}$ for the SE lobe, consistent with the typical GRG luminosities. The radio lobes show a fractional linear polarization $approx 9 %$ consistent with typical values found in other GRG lobes.
We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of $z=0.0897$ for the E0-type host galaxy, 2MASX J08231289+0333016, leading to M$_r = -22.6$ and a $1.4,$GHz radio luminosity density of $L_{rm 1.4} = 5.5times10^{24}$ W Hz$^{-1}$. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley (FR) classes I and II. The projected largest angular size of $approx8,$arcmin corresponds to $800,$kpc and the full length of the source along the curved jets/trails is $1.1,$Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301,at $1.2-2.6times10^{43}$ erg s$^{-1}$ for assumed intra-cluster medium temperatures of $1.0-5.0,$keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with $10^7,$yrs in between. This reinforces the idea that an association between RGZ J082312.9+033301, and the newly discovered poor cluster exists.
We report on the discovery in the LOFAR Multifrequency Snapshot Sky Survey (MSSS) of a giant radio galaxy (GRG) with a projected size of $2.56 pm 0.07$ Mpc projected on the sky. It is associated with the galaxy triplet UGC 9555, within which one is identified as a broad-line galaxy in the Sloan Digital Sky Survey (SDSS) at a redshift of $0.05453 pm 1 times 10^{-5} $, and with a velocity dispersion of $215.86 pm 6.34$ km/s. From archival radio observations we see that this galaxy hosts a compact flat-spectrum radio source, and we conclude that it is the active galactic nucleus (AGN) responsible for generating the radio lobes. The radio luminosity distribution of the jets, and the broad-line classification of the host AGN, indicate this GRG is orientated well out of the plane of the sky, making its physical size one of the largest known for any GRG. Analysis of the infrared data suggests that the host is a lenticular type galaxy with a large stellar mass ($log~mathrm{M}/mathrm{M}_odot = 11.56 pm 0.12$), and a moderate star formation rate ($1.2 pm 0.3~mathrm{M}_odot/mathrm{year}$). Spatially smoothing the SDSS images shows the system around UGC 9555 to be significantly disturbed, with a prominent extension to the south-east. Overall, the evidence suggests this host galaxy has undergone one or more recent moderate merger events and is also experiencing tidal interactions with surrounding galaxies, which have caused the star formation and provided the supply of gas to trigger and fuel the Mpc-scale radio lobes.
In this Letter, we report the discovery of a radio halo in the high-redshift galaxy cluster PSZ2 G099.86+58.45 ($z=0.616$) with the LOw Frequency ARray (LOFAR) at 120-168 MHz. This is one of the most distant radio halos discovered so far. The diffuse emission extends over $sim$ 1 Mpc and has a morphology similar to that of the X-ray emission as revealed by XMM-Newton data. The halo is very faint at higher frequencies and is barely detected by follow-up 1-2 GHz Karl G.~Jansky Very Large Array (JVLA) observations, which enable us to constrain the radio spectral index to be $alphaleq 1.5-1.6$, i.e.; with properties between canonical and ultra-steep spectrum radio halos. Radio halos are currently explained as synchrotron radiation from relativistic electrons that are re-accelerated in the intra-cluster medium (ICM) by turbulence driven by energetic mergers. We show that in such a framework radio halos are expected to be relatively common at $sim150$ MHz ($sim30-60%$) in clusters with mass and redshift similar to PSZ2 G099.86+58.45; however, at least 2/3 of these radio halos should have steep spectrum and thus be very faint above $sim 1$ GHz frequencies. Furthermore, since the luminosity of radio halos at high redshift depends strongly on the magnetic field strength in the hosting clusters, future LOFAR observations will also provide vital information on the origin and amplification of magnetic fields in galaxy clusters.
We present the detection of a giant radio halo (GRH) in the Sunyaev-Zeldovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 ($z = 0.363$), observed with the Giant Metrewave Radio Telescope at 325 MHz and 610 MHz. We find this cluster to host a faint ($S_{610} = 5.6 pm 1.4$ mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest-mass systems, $M_{rm 500,SZ} = (5.0 pm 1.2) times 10^{14} M_odot$, found to host a GRH. We measure the GRH at lower significance at 325 MHz ($S_{325} = 10.3 pm 5.3$ mJy), obtaining a spectral index measurement of $alpha^{610}_{325} = 1.0^{+0.7}_{-0.9}$. This result is consistent with the mean spectral index of the population of typical radio halos, $alpha = 1.2 pm 0.2$. Adopting the latter value, we determine a 1.4 GHz radio power of $P_{1.4text{GHz}} = (1.0 pm 0.3) times 10^{24}$ W Hz$^{-1}$, placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the ICM morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of $v_perp = 1880 pm 280$ km s$^{-1}$. We construct a simple merger model to infer relevant time-scales in the merger. From its location on the $P_{rm 1.4GHz}{-}L_{rm X}$ scaling relation, we infer that we observe ACT-CL J0256.5+0006 approximately 500 Myr before first core crossing.