Do you want to publish a course? Click here

Experimental adaptive Bayesian estimation of multiple phases with limited data

96   0   0.0 ( 0 )
 Added by Fabio Sciarrino
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Achieving ultimate bounds in estimation processes is the main objective of quantum metrology. In this context, several problems require measurement of multiple parameters by employing only a limited amount of resources. To this end, adaptive protocols, exploiting additional control parameters, provide a tool to optimize the performance of a quantum sensor to work in such limited data regime. Finding the optimal strategies to tune the control parameters during the estimation process is a non-trivial problem, and machine learning techniques are a natural solution to address such task. Here, we investigate and implement experimentally for the first time an adaptive Bayesian multiparameter estimation technique tailored to reach optimal performances with very limited data. We employ a compact and flexible integrated photonic circuit, fabricated by femtosecond laser writing, which allows to implement different strategies with high degree of control. The obtained results show that adaptive strategies can become a viable approach for realistic sensors working with a limited amount of resources.



rate research

Read More

We report an experimental realization of an adaptive quantum state tomography protocol. Our method takes advantage of a Bayesian approach to statistical inference and is naturally tailored for adaptive strategies. For pure states we observe close to 1/N scaling of infidelity with overall number of registered events, while best non-adaptive protocols allow for $1/sqrt{N}$ scaling only. Experiments are performed for polarization qubits, but the approach is readily adapted to any dimension.
We derive, and experimentally demonstrate, an interferometric scheme for unambiguous phase estimation with precision scaling at the Heisenberg limit that does not require adaptive measurements. That is, with no prior knowledge of the phase, we can obtain an estimate of the phase with a standard deviation that is only a small constant factor larger than the minimum physically allowed value. Our scheme resolves the phase ambiguity that exists when multiple passes through a phase shift, or NOON states, are used to obtain improved phase resolution. Like a recently introduced adaptive technique [Higgins et al 2007 Nature 450 393], our experiment uses multiple applications of the phase shift on single photons. By not requiring adaptive measurements, but rather using a predetermined measurement sequence, the present scheme is both conceptually simpler and significantly easier to implement. Additionally, we demonstrate a simplified adaptive scheme that also surpasses the standard quantum limit for single passes.
Quantifying coherence has received increasing attention, and considerable work has been directed towards finding coherence measures. While various coherence measures have been proposed in theory, an important issue following is how to estimate these coherence measures in experiments. This is a challenging task, since the state of a system is often unknown in practical applications and the accessible measurements in a real experiment are typically limited. In this Letter, we put forward an approach to estimate coherence measures of an unknown state from any limited experimental data available. Our approach is not only applicable to coherence measures but can be extended to other resource measures.
Quantum phase estimation is a cornerstone in quantum algorithm design, allowing for the inference of eigenvalues of exponentially-large sparse matrices. The maximum rate at which these eigenvalues may be learned, --known as the Heisenberg limit--, is constrained by bounds on the circuit depth required to simulate an arbitrary Hamiltonian. Single-control qubit variants of quantum phase estimation have garnered interest in recent years due to lower circuit depth and minimal qubit overhead. In this work we show that these methods can achieve the Heisenberg limit, {em also} when one is unable to prepare eigenstates of the system. Given a quantum subroutine which provides samples of a `phase function $g(k)=sum_j A_j e^{i phi_j k}$ with unknown eigenvalue phases $phi_j$ and probabilities $A_j$ at quantum cost $O(k)$, we show how to estimate the phases ${phi_j}$ with accuracy (root-mean-square) error $delta$ for total quantum cost $T=O(delta^{-1})$. Our scheme combines the idea of Heisenberg-limited multi-order quantum phase estimation for a single eigenvalue phase cite{Higgins09Demonstrating,Kimmel15Robust} with subroutines with so-called dense quantum phase estimation which uses classical processing via time-series analysis for the QEEP problem cite{Somma19Quantum} or the matrix pencil method. For our algorithm which adaptively fixes the choice for $k$ in $g(k)$ we prove Heisenberg-limited scaling when we use the time-series/QEEP subroutine. We present numerical evidence that using the matrix pencil technique the algorithm can achieve Heisenberg-limited scaling as well.
Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shors factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, non-fault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a Silicon quantum photonic device. The approach is verified to be well suited for pre-threshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا