No Arabic abstract
We present an analysis of the evolution of circumstellar dust and molecules in the environment of the very late thermal pulse object V4334 Sgr (Sakurais Object) over a $sim20$-year period, drawing on ground-, airborne- and space-based infrared photometry and spectroscopy. The dust emission, which started in 1997, resembles a blackbody that cooled from $sim1200$K in 1998 August to $sim180$K in 2016 July. The dust mass, assuming amorphous carbon, was $sim5times10^{-10}$M$_odot$ in 1998 August, and we estimate that the total dust mass was $sim2times10^{-5}$M$_odot$ by $sim2016$. The appearance of a near infrared excess in 2008 suggests a new episode of (or renewed) mass loss began then. We infer lower limits on the bolometric luminosity of the embedded star from that of the dust shell, which rose to $sim16000$L$_odot$ before declining to $sim3000$L$_odot$. There is evidence for weak 6-7$mu$m absorption, which we attribute to hydrogenated amorphous carbon formed in material ejected by Sakurais Object during a mass ejection phase that preceded the 1997 event. We detect small hydrocarbon and other molecules in the spectra, and trace the column densities in hydrogen cyanide (HCN) and acetylene (C$_2$H$_2$). We use the former to determine the $^{12}$C/$^{13}$C ratio to be $6.4pm0.7$, 14 times smaller than the Solar System value.
We present an observation of the very late thermal pulse object V4334 Sgr (Sakurais Object) with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. The emission from 5-38 microns is dominated by the still-cooling dust shell. A number of features are seen in absorption against the dust shell, which we attribute to HCN and polyyne molecules. We use these features to determine the 12C/13C ratio for the absorbing gas to be ~ 3.2 (+3.2,-1.6}; this implies that, despite the H-content of the molecules, the hydrocarbon-bearing gas must have originated in material produced in the very late thermal pulse. We see no evidence of emission lines, despite the recently-reported optical and radio observations that suggest the effective temperature of the stellar remnant is rising.
We investigate the reheating of the very late thermal pulse (VLTP) object V4334 Sgr (Sakurais Object) using radio observations from the Very Large Array, and optical spectra obtained with the Very Large Telescope. We find a sudden rise of the radio flux at 5 and 8 GHz - from <= 90 micro-Jy and 80 +/- 30 micro-Jy in February 2005 to 320 micro-Jy and 280 micro-Jy in June 2006. Optical line emission is also evolving, but the emission lines are fading. The optical line emission and early radio flux are attributed to a fast shock (and not photoionization as was reported earlier) which occurred around 1998. The fading is due to post-shock cooling and recombination. The recent rapid increase in radio flux is evidence for the onset of photoionization of carbon starting around 2005. The current results indicate an increase in the stellar temperature to 12 kK in 2006. The mass ejected in the VLTP eruption is M_ej >= 1e-4 Msol, but could be as high as 1e-2 Msol, depending mainly on the distance and the clumping factor of the outflow. We derive a distance between 1.8 and 5 kpc. A high mass loss could expose the helium layer and yield abundances compatible with those of [WC] and PG1159 stars.
The high resolution optical spectra of H-deficient stars, R Coronae Borealis stars and H-deficient carbon stars are analyzed by synthesizing the C2 Swan bands (0,1), (0,0), and (1,0) using our detailed line-list and Uppsala model atmosphere, to determine the C-abundances and the 12C/13C ratios which are potential clues to the formation process of these stars. The C-abundances derived from C2 bands are about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). The carbon abundances derived from C I lines are a factor of four lower than that adopted for the model atmosphere over the same C/He interval, as reported by Asplund et al.: the carbon problem. In principle, the carbon abundances obtained from C2 Swan bands and that adopted for the model atmosphere can be equated for a particular choice of C/He that varies from star to star (unlike C I lines). Then, the carbon problem for C2 bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. The derived carbon abundances and the 12C/13C ratios are discussed in light of the double degenerate (DD) and the final flash (FF) scenarios. The carbon abundance and the 12C/13C ratios for the FF product, Sakurais Object is derived. The carbon abundance in the Sakurais object is 10 times higher than in the RCB star VZ Sgr. On an average, the carbon abundance in the Sakurais Object is about 10 to 100 times higher than in RCB stars. The 12C/13C ratio in Sakurais Object is 3.4, the equilibrium value, as expected for FF products.
V4334 Sgr (Sakurais object) is an enigmatic evolved star that underwent a very late thermal pulse a few years before its discovery in 1996. It ejected a new, hydrogen-deficient nebula in the process. Emission lines from the newly ejected gas were first discovered in 1998 (He I 1083 nm) and 2001 (optical). We have monitored the optical emission spectrum since. From 2001 through 2007 the optical spectrum showed an exponential decline in flux, consistent with a shock that occurred around 1998 and started cooling soon after that. In this paper we show that since 2008 the line fluxes have been continuously rising again. Our preliminary interpretation is that this emission comes from a region close to the central star, and is excited by a second shock. This shock may have been induced by an increase in the stellar mass loss and wind velocity associated with a rise in the stellar temperature.
In 1996, Sakurais object (V4334 Sgr) suddenly brightened in the centre of a faint Planetary Nebula (PN). This very rare event was interpreted as the reignition of a hot white dwarf that caused a rapid evolution back to the cool giant phase. From 1998 on, a copious amount of dust has formed continuously, screening out the star which has remained embedded in this expanding high optical depth envelope. The new observations, reported here, are used to study the morphology of the circumstellar dust in order to investigate the hypothesis that Sakurais Object is surrounded by a thick spherical envelope of dust. We have obtained unprecedented, high-angular resolution spectro-interferometric observations, taken with the mid-IR interferometer MIDI/VLTI, which resolve the dust envelope of Sakurais object. We report the discovery of a unexpectedly compact (30 x 40 milliarcsec, 105 x 140 AU assuming a distance of 3.5 kpc), highly inclined, dust disk. We used Monte Carlo radiative-transfer simulations of a stratified disk to constrain its geometric and physical parameters, although such a model is only a rough approximation of the rapidly evolving dust structure. Even though the fits are not fully satisfactory, some useful and robust constraints can be inferred. The disk inclination is estimated to be 75+/-3 degree with a large scale height of 47+/-7 AU. The dust mass of the disk is estimated to be 6 10^{-5} solar mass. The major axis of the disk (132+/-3 degree) is aligned with an asymmetry seen in the old PN that was re-investigated as part of this study. This implies that the mechanism responsible for shaping the dust envelope surrounding Sakurais object was already at work when the old PN formed.