No Arabic abstract
Three-dimensional particle tracking velocimetry (3D-PTV) technique is widely used to acquire the complicated trajectories of particles and flow fields. It is known that the accuracy of 3D-PTV depends on the mapping function to reconstruct three-dimensional particles locations. The mapping function becomes more complicated if the number of cameras is increased and there is a liquid-vapor interface, which crucially affect the total computation time. In this paper, using a shallow neural network model (SNN), we dramatically decrease the computation time with a high accuracy to successfully reconstruct the three-dimensional particle positions, which can be used for real-time particle detection for 3D-PTV. The developed technique is verified by numerical simulations and applied to measure a complex solutal Marangoni flow patterns inside a binary mixture droplet.
The radial relative velocity between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence - planar 4-frame particle tracking velocimetry - using routine PIV hardware. This study demonstrates the feasibility of accurately measuring RV using routine hardware and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.
Uncertainty quantification for Particle Image Velocimetry (PIV) is critical for comparing flow fields with Computational Fluid Dynamics (CFD) results, and model design and validation. However, PIV features a complex measurement chain with coupled, non-linear error sources, and quantifying the uncertainty is challenging. Multiple assessments show that none of the current methods can reliably measure the actual uncertainty across a wide range of experiments. Because the current methods differ in assumptions regarding the measurement process and calculation procedures, it is not clear which method is best to use for an experiment. To address this issue, we propose a method to estimate an uncertainty methods sensitivity and reliability, termed the Meta-Uncertainty. The novel approach is automated, local, and instantaneous, and based on perturbation of the recorded particle images. We developed an image perturbation scheme based on adding random unmatched particles to the interrogation window pair considering the signal-to-noise (SNR) of the correlation plane. Each uncertainty schemes response to several trials of random particle addition is used to estimate a reliability metric, defined as the rate of change of the inter-quartile range (IQR) of the uncertainties with increasing levels of particle addition. We also propose applying the meta-uncertainty as a weighting metric to combine uncertainty estimates from individual schemes, based on ideas from the consensus forecasting literature. We use PIV measurements across a range of canonical flows to assess the performance of the uncertainty schemes.The results show that the combined uncertainty method outperforms the individual methods, and establish the meta-uncertainty as a useful reliability assessment tool for PIV uncertainty quantification.
Convolutional neural networks (CNNs) have recently been applied to predict or model fluid dynamics. However, mechanisms of CNNs for learning fluid dynamics are still not well understood, while such understanding is highly necessary to optimize the network or to reduce trial-and-errors during the network optmization. In the present study, a CNN to predict future three-dimensional unsteady wake flow using flow fields in the past occasions is developed. Mechanisms of the developed CNN for prediction of wake flow behind a circular cylinder are investigated in two flow regimes: the three-dimensional wake transition regime and the shear-layer transition regime. Feature maps in the CNN are visualized to compare flow structures which are extracted by the CNN from flow at the two flow regimes. In both flow regimes, feature maps are found to extract similar sets of flow structures such as braid shear-layers and shedding vortices. A Fourier analysis is conducted to investigate mechanisms of the CNN for predicting wake flow in flow regimes with different wave number characteristics. It is found that a convolution layer in the CNN integrates and transports wave number information from flow to predict the dynamics. Characteristics of the CNN for transporting input information including time histories of flow variables is analyzed by assessing contributions of each flow variable and time history to feature maps in the CNN. Structural similarities between feature maps in the CNN are calculated to reveal the number of feature maps that contain similar flow structures. By reducing the number of feature maps that contain similar flow structures, it is also able to successfully reduce the number of parameters to learn in the CNN by 85% without affecting prediction performances.
This article describes two independent developments aimed at improving the Particle Tracking Method for measurements of flow or particle velocities. First, a stereoscopic multicamera calibration method that does not require any optical model is described and evaluated. We show that this new calibration method gives better results than the most commonly-used technique, based on the Tsai camera/optics model. Additionally, the methods uses a simple interpolant to compute the transformation matrix and it is trivial to apply for any experimental fluid dynamics visualization set up. The second contribution proposes a solution to remove noise from Eulerian measurements of velocity statistics obtained from Particle Tracking velocimetry, without the need of filtering and/or windowing. The novel method presented here is based on recomputing particle displacement measurements from two consecutive frames for multiple different time-step values between frames. We show the successful application of this new technique to recover the second order velocity structure function of the flow. Increased accuracy is demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from the second order structure function against previously validated measurements. These two techniques for improvement of experimental fluid/particle velocity measurements can be combined to provide high accuracy 3D particle and/or flow velocity statistics and derived variables needed to characterize a turbulent flow.
A three-dimensional (3D) scanning velocimetry system is developed to quantify the 3D configurations of particles and their surrounding volumetric, three-component velocity fields. The approach uses a translating laser sheet to rapidly scan through a volume of interest and sequentially illuminate slices of the flow containing both tracers seeded in the fluid and particles comprising the aggregation of interest. These image slices are captured by a single high-speed camera, encoding information about the third spatial dimension within the image time-series. Where previous implementations of scanning systems have been developed for either volumetric flow quantification or 3D object reconstruction, we evaluate the feasibility of accomplishing these tasks concurrently with a single-camera, which can streamline data collection and analysis. The capability of the system was characterized using a study of induced vertical migrations of millimeter-scale brine shrimp (Artemia salina). Identification and reconstruction of individual swimmer bodies and 3D trajectories within the migrating aggregation were achieved up to the maximum number density studied presently, $8 , times,10^5$ animals per $textrm{m}^3$. This number density is comparable to the densities of previous depth-averaged 2D measurements of similar migrations. Corresponding velocity measurements of the flow indicate that the technique is capable of resolving the 3D velocity field in and around the swimming aggregation. At these animal number densities, instances of coherent flow induced by the migrations were observed. The accuracy of these flow measurements was confirmed in separate studies of a free jet at $Re_D = 50$.