On the classification of Smale-Barden manifolds with Sasakian structures


Abstract in English

Smale-Barden manifolds $M$ are classified by their second homology $H_2(M,{mathbb Z})$ and the Barden invariant $i(M)$. It is an important and dificult question to decide when $M$ admits a Sasakian structure in terms of these data. In this work we show methods of doing this. In particular we realize all $M$ with $H_2(M)={mathbb Z}^koplus(oplus_{i=1}^r{mathbb Z}_{m_i}^{2g_i})$ and $i=0,infty$, provided that $kgeq 1$, $m_igeq 2$, $g_igeq 1$, $m_i$ are pairwise coprime. Using our methods we also contribute to the problem of the existence of definite Sasakian structures on rational homology spheres. Also, we give a complete solution to the problem of the existence of Sasakian structures on rational homology spheres in the class of semi-regular Sasakian structures.

Download