Do you want to publish a course? Click here

Observations of the low-luminosity Type Iax supernova 2019gsc: a fainter clone of SN 2008ha?

203   0   0.0 ( 0 )
 Added by Lina Tomasella Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present optical photometric and spectroscopic observations of the faint-and-fast evolving type Iax SN 2019gsc, extending from the time of g-band maximum until about fifty days post maximum, when the object faded to an apparent r-band magnitude m_r = 22.48+/-0.11 mag. SN 2019gsc reached a peak luminosity of only M_g = -13.58 +/- 0.15 mag, and is characterised with a post-maximum decline rate Delta(m_15)_g = 1.08 +/- 0.14 mag. These light curve parameters are comparable to those measured for SN 2008ha of M_g = -13.89 +/- 0.14 mag at peak and Delta(m_15)_g = 1.80 +/- 0.03 mag. The spectral features of SN 2019gsc also resemble those of SN 2008ha at similar phases. This includes both the extremely low ejecta velocity at maximum, about 3,000 km/s, and at late-time (phase +54 d) strong forbidden iron and cobalt lines as well as both forbidden and permitted calcium features. Furthermore, akin to SN 2008ha, the bolometric light curve of SN 2019gsc is consistent with the production of 0.003 +/- 0.001 Msol of nickel. The explosion parameters, M_ej = 0.13 Msol and E_k = 12 x 10E48 erg, are also similar to those inferred for SN 2008ha. We estimate a sub-solar oxygen abundance for the host galaxy of SN 2019gsc, (12 + log10(O/H) = 8.10 +/- 0.18 dex), consistent with the equally metal-poor environment of SN 2008ha. Altogether, our dataset of SN 2019gsc indicates that this is a member of a small but growing group of extreme SN Iax that includes SN 2008ha and SN 2010ae.



rate research

Read More

We present ultraviolet, optical, and near-infrared photometry as well as optical spectra of the peculiar supernova (SN) 2008ha. SN 2008ha had a very low peak luminosity, reaching only M_V = -14.2 mag, and low line velocities of only ~2000 km/s near maximum brightness, indicating a very small kinetic energy per unit mass of ejecta. Spectroscopically, SN 2008ha is a member of the SN 2002cx-like class of SNe, a peculiar subclass of SNe Ia; however, SN 2008ha is the most extreme member, being significantly fainter and having lower line velocities than the typical member, which is already ~2 mag fainter and has line velocities ~5000 km/s smaller (near maximum brightness) than a normal SN Ia. SN 2008ha had a remarkably short rise time of only ~10 days, significantly shorter than either SN 2002cx-like objects (~15 days) or normal SNe Ia (~19.5 days). The bolometric light curve of SN 2008ha indicates that SN 2008ha peaked at L_peak = (9.5 +/- 1.4) x 10^40 ergs/s, making SN 2008ha perhaps the least luminous SN ever observed. From its peak luminosity and rise time, we infer that SN 2008ha generated (3.0 +/- 0.9) x 10^-3 M_sun of 56Ni, had a kinetic energy of ~2 x 10^48 ergs, and ejected 0.15 M_sun of material. We classify three new (and one potential) members of the SN 2002cx-like class, expanding the sample to 14 (and one potential) members. The host-galaxy morphology distribution of the class is consistent with that of SNe Ia, Ib, Ic, and II. Several models for generating low-luminosity SNe can explain the observations of SN 2008ha; however, if a single model is to describe all SN 2002cx-like objects, either electron capture in Ne-Mg white dwarfs causing a core collapse, or deflagration of C-O white dwarfs with SN 2008ha being a partial deflagration and not unbinding the progenitor star, are preferred. Abridged.
387 - A. Pastorello 2009
Type II-linear supernovae are thought to arise from progenitors that have lost most of their H envelope by the time of the explosion, and they are poorly understood because they are only occasionally discovered. It is possible that they are intrinsically rare, but selection effects due to their rapid luminosity evolution may also play an important role in limiting the number of detections. In this context, the discovery of a subluminous type II-linear event is even more interesting. We investigate the physical properties and characterise the explosion site of the type II SN 1999ga, which exploded in the nearby spiral galaxy NGC 2442. Spectroscopic and photometric observations of SN 1999ga allow us to constrain the energetics of the explosion and to estimate the mass of the ejected material, shedding light on the nature of the progenitor star in the final stages of its life. The study of the environment in the vicinity of the explosion site provides information on a possible relation between these unusual supernovae and the properties of the galaxies hosting them. Despite the lack of early-time observations, we provide reasonable evidence that SN 1999ga was probably a type II-linear supernova that ejected a few solar masses of material, with a very small amount of radioactive elements of the order of 0.01 solar masses.
We present early-time ($t < +50$ days) observations of SN 2019muj (= ASASSN-19tr), one of the best-observed members of the peculiar SN Iax class. Ultraviolet and optical photometric and optical and near-infrared spectroscopic follow-up started from $sim$5 days before maximum light ($t_{max}(B)$ on $58707.8$ MJD) and covers the photospheric phase. The early observations allow us to estimate the physical properties of the ejecta and characterize the possible divergence from a uniform chemical abundance structure. The estimated bolometric light curve peaks at 1.05 $times$ 10$^{42}$ erg s$^{-1}$ and indicates that only 0.031 $M_odot$ of $^{56}$Ni was produced, making SN 2019muj a moderate luminosity object in the Iax class with peak absolute magnitude of $M_{V}$ = -16.4 mag. The estimated date of explosion is $t_0 = 58698.2$ MJD and implies a short rise time of $t_{rise}$ = 9.6 days in $B$-band. We fit of the spectroscopic data by synthetic spectra, calculated via the radiative transfer code TARDIS. Adopting the partially stratified abundance template based on brighter SNe Iax provides a good match with SN 2019muj. However, without earlier spectra, the need for stratification cannot be stated in most of the elements, except carbon, which is allowed to appear in the outer layers only. SN 2019muj provides a unique opportunity to link extremely low-luminosity SNe Iax to well-studied, brighter SNe Iax.
127 - Ben Davies , Emma R. Beasor 2020
By comparing the properties of Red Supergiant (RSG) supernova progenitors to those of field RSGs, it has been claimed that there is an absence of progenitors with luminosities $L$ above $log(L/L_odot) > 5.2$. This is in tension with the empirical upper luminosity limit of RSGs at $log(L/L_odot) = 5.5$, a result known as the `Red Supergiant Problem. This has been interpreted as evidence for an upper mass threshold for the formation of black-holes. In this paper, we compare the observed luminosities of RSG SN progenitors with the observed RSG $L$-distribution in the Magellanic Clouds. Our results indicate that the absence of bright SN II-P/L progenitors in the current sample can be explained at least in part by the steepness of the $L$-distribution and a small sample size, and that the statistical significance of the Red Supergiant Problem is between 1-2$sigma$ . Secondly, we model the luminosity distribution of II-P/L progenitors as a simple power-law with an upper and lower cutoff, and find an upper luminosity limit of $log(L_{rm hi}/L_odot) = 5.20^{+0.17}_{-0.11}$ (68% confidence), though this increases to $sim$5.3 if one fixes the power-law slope to be that expected from theoretical arguments. Again, the results point to the significance of the RSG Problem being within $sim 2 sigma$. Under the assumption that all progenitors are the result of single-star evolution, this corresponds to an upper mass limit for the parent distribution of $M_{rm hi} = 19.2{rm M_odot}$, $pm1.3 {rm M_odot (systematic)}$, $^{+4.5}_{-2.3} {rm M_odot}$ (random) (68% confidence limits).
We present the discovery and optical follow-up of the faintest supernova-like transient known. The event (SN 2019gsc) was discovered in a star-forming host at 53,Mpc by ATLAS. A detailed multi-colour light curve was gathered with Pan-STARRS1 and follow-up spectroscopy was obtained with the NOT and Gemini-North. The spectra near maximum light show narrow features at low velocities of 3000 to 4000 km s$^{-1}$, similar to the extremely low luminosity SNe 2010ae and 2008ha, and the light curve displays a similar fast decline (dmr $0.91 pm 0.10$ mag). SNe 2010ae and 2008ha have been classified as type Iax supernovae, and together the three either make up a distinct physical class of their own or are at the extreme low luminosity end of this diverse supernova population. The bolometric light curve is consistent with a low kinetic energy of explosion ($E_{rm k} sim 10^{49}$ erg s$^{-1}$), a modest ejected mass ($M_{rm ej} sim 0.2$ msol) and radioactive powering by $^{56}$Ni ($M_{rm Ni} sim 2 times 10^{-3}$ msol). The spectra are quite well reproduced with radiative transfer models (TARDIS) and a composition dominated by carbon, oxygen, magnesium, silicon and sulphur. Remarkably, all three of these extreme Iax events are in similar low-metallicity star-forming environments. The combination of the observational constraints for all three may be best explained by deflagrations of near $M_{rm Ch}$ hybrid carbon-oxygen-neon white dwarfs which have short evolutionary pathways to formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا