On the scaling of composite operators in Asymptotic Safety


Abstract in English

The Asymptotic Safety hypothesis states that the high-energy completion of gravity is provided by an interacting renormalization group fixed point. This implies non-trivial quantum corrections to the scaling dimensions of operators and correlation functions which are characteristic for the corresponding universality class. We use the composite operator formalism for the effective average action to derive an analytic expression for the scaling dimension of an infinite family of geometric operators $int d^dx sqrt{g} R^n$. We demonstrate that the anomalous dimensions interpolate continuously between their fixed point value and zero when evaluated along renormalization group trajectories approximating classical general relativity at low energy. Thus classical geometry emerges when quantum fluctuations are integrated out. We also compare our results to the stability properties of the interacting renormalization group fixed point projected to $f(R)$-gravity, showing that the composite operator formalism in the single-operator approximation cannot be used to reliably determine the number of relevant parameters of the theory.

Download