Do you want to publish a course? Click here

Inverse moving source problem for time-fractional evolution equations: Determination of profiles

238   0   0.0 ( 0 )
 Added by Yikan Liu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This article is concerned with two inverse problems on determining moving source profile functions in evolution equations with a derivative order $alphain(0,2]$ in time. In the first problem, the sources are supposed to move along known straight lines, and we suitably choose partial interior observation data in finite time. Reducing the problems to the determination of initial values, we prove the unique determination of one and two moving source profiles for $0<alphale1$ and $1<alphale2$, respectively. In the second problem, the orbits of moving sources are assumed to be known, and we consider the full lateral Cauchy data. At the cost of infinite observation time, we prove the unique determination of one moving source profile by constructing test functions.

rate research

Read More

This paper is concerned with the inverse problem on determining an orbit of the moving source in a fractional diffusion(-wave) equations in a connected bounded domain of $mathbb R^d$ or in the whole space $mathbb R^d$. Based on a newly established fractional Duhamels principle, we derive a Lipschitz stability estimate in the case of a localized moving source by the observation data at $d$ interior points. The uniqueness for the general non-localized moving source is verified with additional data of more interior observations.
Given $(M,g)$, a compact connected Riemannian manifold of dimension $d geq 2$, with boundary $partial M$, we consider an initial boundary value problem for a fractional diffusion equation on $(0,T) times M$, $T>0$, with time-fractional Caputo derivative of order $alpha in (0,1) cup (1,2)$. We prove uniqueness in the inverse problem of determining the smooth manifold $(M,g)$ (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solution on a subset of $partial M$ at fixed time. In the flat case where $M$ is a compact subset of $mathbb R^d$, two out the three coefficients $rho$ (weight), $a$ (conductivity) and $q$ (potential) appearing in the equation $rho partial_t^alpha u-textrm{div}(a abla u)+ q u=0$ on $(0,T)times Omega$ are recovered simultaneously.
77 - Yikan Liu 2020
This article is concerned with the derivation of numerical reconstruction schemes for the inverse moving source problem on determining source profiles in (time-fractional) evolution equations. As a continuation of the theoretical result on the uniqueness, we adopt a minimization procedure with regularization to construct iterative thresholding schemes for the reduced backward problems on recovering one or two unknown initial value(s). Moreover, an elliptic approach is proposed to solve a convection equation in the case of two profiles.
In this paper, we discuss the uniqueness for solution to time-fractional diffusion equation $partial_t^alpha (u-u_0) + Au=0$ with the homogeneous Dirichlet boundary condition, where an elliptic operator $-A$ is not necessarily symmetric. We prove that the solution is identically zero if its normal derivative with respect to the operator $A$ vanishes on an arbitrary small part of the spatial domain over a time interval. The proof is based on the Laplace transform and the spectral decomposition, and is valid for more general time-fractional partial differential equations, including those involving non symmetric operators.
In this article, we investigate inverse source problems for a wide range of PDEs of parabolic and hyperbolic types as well as time-fractional evolution equations by partial interior observation. Restricting the source terms to the form of separated variables, we establish uniqueness results for simultaneously determining both temporal and spatial components without non-vanishing assumptions at $t=0$, which seems novel to the best of our knowledge. Remarkably, mostly we allow a rather flexible choice of the observation time not necessarily starting from $t=0$, which fits into various situations in practice. Our main approach is based on the combination of the Titchmarsh convolution theorem with unique continuation properties and time-analyticity of the PDEs under consideration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا