No Arabic abstract
In this paper, we construct the first analytic examples of (3+1)-dimensional self-gravitating regular cosmic tube solutions which are superconducting, free of curvature singularities and with non-trivial topological charge in the Einstein-SU(2) non-linear sigma-model. These gravitating topological solitons at a large distance from the axis look like a (boosted) cosmic string with an angular defect given by the parameters of the theory, and near the axis, the parameters of the solutions can be chosen so that the metric is singularity free and without angular defect. The curvature is concentrated on a tube around the axis. These solutions are similar to the Cohen-Kaplan global string but regular everywhere, and the non-linear sigma-model regularizes the gravitating global string in a similar way as a non-Abelian field regularizes the Dirac monopole. Also, these solutions can be promoted to those of the fully coupled Einstein-Maxwell non-linear sigma-model in which the non-linear sigma-model is minimally coupled both to the U(1) gauge field and to General Relativity. The analysis shows that these solutions behave as superconductors as they carry a persistent current even when the U(1) field vanishes. Such persistent current cannot be continuously deformed to zero as it is tied to the topological charge of the solutions themselves. The peculiar features of the gravitational lensing of these gravitating solitons are shortly discussed.
We study quantum aspects of the target space of the non-linear sigma model which is a low-energy effective theory of the gauged linear sigma model (GLSM). As such, we especially compute the exact sphere partition function of GLSM for KK$5$-branes whose background geometry is a Taub-NUT space, using the supersymmetric localization technique on the Coulomb branch. From the sphere partition function, we distill the world-sheet instanton effects. In particular, we show that concerning the single-centered Taub-NUT space, the instanton contributions exist only if the asymptotic radius of the $S^1$ fiber in the Taub-NUT space is zero.
In this paper, we investigate tree-level scattering amplitude relations in $U(N)$ non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24] both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell $U(1)$ identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy $U(1)$-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total $2m$-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.
The integrability of the $Lambda-$Einstein-nonlinear $SU(2)$ $sigma$-model with nonvanishing cosmological charge is studied. We apply the method of singularity analysis of differential equations and we show that the equations for the gravitational field are integrable. The first few terms of the solution are presented.
We construct a cohomological field theory for a gauged linear sigma model space in geometric phase, using the method of gauge theory and differential geometry. The cohomological field theory is expected to match the Gromov-Witten theory of the classical vacuum up to a change of variable, and is expected to match various other algebraic geometric constructions.
In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does not introduce harmful higher-derivatives. For this construction, we employ off-shell chiral and real linear multiplets. Physical scalars are accommodated in the chiral multiplet whereas curvature resides in a linear one.