No Arabic abstract
3C-SiC epitaxially grown on Si displays a large wealth of extended defects. In particular, single, double and triple stacking faults (SFs) are observed in several experiments to coexist. Overabundance of defects has so far limited the exploitation of 3C-SiC/Si for power electronics, in spite of its several ideal properties (mainly in terms of wide gap, high breakdown fields and thermal properties) and the possibility of a direct integration in the Si technology. Here we use a multiscale approach, based on both classical molecular dynamics (MD) simulations and first-principle calculations, to investigate in-depth the origin, nature and properties of most common 3C-SiC/Si(001) extended defects. Our MD simulations reveal a natural path for the formation of partial dislocation complexes terminating both double and triple SFs. MD results are used as input for superior DFT calculations, allowing us to better determine the core structure and to investigate electronic properties. It turns out that the partial dislocation complexes terminating double and triple SFs are responsible for the introduction of electronic states significantly filling the gap. On the other hand, individual partial dislocations terminating single SFs only induce states very close to the gap edge. We conclude that partial dislocation complexes, in particular the most abundant triple ones, are killer defects in terms of favoring leakage currents. Suggestions coming from theory/simulations for devising a strategy to lower their occurrence are discussed.
This communication presents a comparative study on the charge transport (in transient and steady state) in bulk n-type doped SiC-polytypes: 3C-SiC, 4H-SiC and 6H-SiC. The time evolution of the basic macrovariables: the electron drift velocity and the non-equilibrium temperature are obtained theoretically by using a Non-Equilibrium Quantum Kinetic Theory, derived from the method of Nonequilibrium Statistical Operator (NSO). The dependence on the intensity and orientation of the applied electric field of this macrovariables and mobility are derived and analyzed. From the results obtained in this paper, the most attractive of these semiconductors for applications requiring greater electronic mobility is the polytype 4H-SiC with the electric field applied perpendicular to the c-axis.
Several defect configurations including oxygen vacancies have been investigated as possible origins of the reported room-temperature ferroelectricity of strontium titanate (STO) thin films [Appl. Phys. Letts. 91, 042908 (2007)]. First-principles calculations revealed that the Sr-O-O vacancy complexes create deep localized states in the band gap of SrTiO3 without affecting its insulating property. These results are in agreement with electronic structural changes determined from optical transmission and X-ray absorption measurements. This work opens the way to exploiting oxygen vacancies and their complexes as a source of ferroelectricity in perovskite oxide thin films, including STO.
Driven by the unprecedented computational power available to scientific research, the use of computers in solid-state physics, chemistry and materials science has been on a continuous rise. This review focuses on the software used for the simulation of matter at the atomic scale. We provide a comprehensive overview of major codes in the field, and analyze how citations to these codes in the academic literature have evolved since 2010. An interactive version of the underlying data set is available at https://atomistic.software .
The MAterials Simulation Toolkit (MAST) is a workflow manager and post-processing tool for ab initio defect and diffusion workflows. MAST codifies research knowledge and best practices for such workflows, and allows for the generation and management of easily modified and reproducible workflows, where data is stored along with workflow information for data provenance tracking. MAST is open-source and available for download (see PDF for links).
Electronic structures of SiC nanoribbons have been studied by spin-polarized density functional calculations. The armchair nanoribbons are nonmagnetic semiconductor, while the zigzag nanoribbons are magnetic metal. The spin polarization in zigzag SiC nanoribbons is originated from the unpaired electrons localized on the ribbon edges. Interestingly, the zigzag nanoribbons narrower than $sim$4 nm present half-metallic behavior. Without the aid of external field or chemical modification, the metal-free half-metallicity predicted for narrow SiC zigzag nanoribbons opens a facile way for nanomaterial spintronics applications.