Do you want to publish a course? Click here

AGN jets versus accretion as reionization sources

77   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmic reionization put an end to the dark ages that came after the recombination era. Observations seem to favor the scenario where massive stars generating photons in low-mass galaxies were responsible for the bulk of reionization. Even though a possible contribution from accretion disks of active galactic nuclei (AGN) has been widely considered, they are currently thought to have had a minor role in reionization. Our aim is to study the possibility that AGN contributed to reionization not only through their accretion disks, but also through ionizing photons coming from the AGN jets interacting with the IGM. We adopt an empirically derived AGN luminosity function at $zsimeq6$, use X-ray observations to correct it for the presence of obscured sources, and estimate the density of jetted AGN. We then use analytical calculations to derive the fraction of jet energy that goes into ionizing photons. Finally, we compute the contribution of AGN jets to the H II volume filling factor at redshifts $zsimeq15-5$. We show that the contribution of the AGN jet lobes to the reionization of the Universe at $zsim6$ might have been as high as $gtrsim 10$% of that of star-forming galaxies, under the most favorable conditions of jetted and obscuration fraction. The contribution of AGN to the reionization, while most likely not dominant, could have been higher than previously assumed, thanks to the radiation originated in the jet lobes.



rate research

Read More

Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of $10^{43}$ and $10^{46}$ erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest $20%$ in $20$ Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of $0.01-0.1$ M$_odot$/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.
Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.
97 - V. Bosch-Ramon 2018
The reionization of the Universe ends the dark ages that started after the recombination era. In the case of H, reionization finishes around $zsim 6$. Faint star-forming galaxies are the best candidate sources of the H-ionizing radiation, although active galactic nuclei may have also contributed. We have explored whether the termination regions of the jets from active galactic nuclei may have contributed significantly to the ionization of H in the late reionization epoch, around $zsim 6-7$. We assumed that, as it has been proposed, active galactic nuclei at $zsim 6$ may have presented a high jet fraction, accretion rate, and duty cycle, and that non-thermal electrons contribute significantly to the pressure of jet termination regions. Empirical black-hole mass functions were adopted to characterize the population of active galactic nuclei. From all this, estimates were derived for the isotropic H-ionizing radiation produced in the jet termination regions, at $zsim 6$, through inverse Compton scattering off CMB photons. We find that the termination regions of the jets of active galactic nuclei may have radiated most of their energy in the form of H-ionizing radiation at $zsim 6$. For typical black-hole mass functions at that redshift, under the considered conditions (long-lasting, common, and very active galactic nuclei with jets), the contribution of these jets to maintain (and possibly enhance) the ionization of H may have been non-negligible. We conclude that the termination regions of jets from active galactic nuclei could have had a significant role in the reionization of the Universe at $zgtrsim 6$.
The cosmic history of supermassive black hole (SMBH) growth is important for understanding galaxy evolution, reionization and the physics of accretion. Recent NuSTAR, Swift-BAT and textit{Chandra} hard X-ray surveys have provided new constraints on the space density of heavily obscured Active Galactic Nuclei (AGN). Using the new X-ray luminosity function derived from these data, we here estimate the accretion efficiency of SMBHs and their contribution to reionization. We calculate the total ionizing radiation from active galactic nuclei (AGN) as a function of redshift, based on the X radiation and distribution of obscuring column density, converted to UV wavelengths. Limiting the luminosity function to unobscured AGN only, our results agree with current UV luminosity functions of unobscured AGN. For realistic assumptions about the escape fraction, the contribution of all AGN to cosmic reionization is $sim4$ times lower than the galaxy contribution (23% at $zsim6$). Our results also offer an observationally constrained prescription that can be used in simulations or models of galaxy evolution. To estimate the average efficiency with which supermassive black holes convert mass to light, we compare the total radiated energy, converted from X-ray light using a bolometric correction, to the most recent local black hole mass density. The most likely value, $eta sim 0.3-0.34$, approaches the theoretical limit for a maximally rotating Kerr black hole, $eta=0.42$, implying that on average growing supermassive black holes are spinning rapidly.
112 - S. Falocco , J. Larsson , S. Nandi 2020
We aim to determine the properties of the central region of NGC 1052 using X-ray and radio data. NGC 1052 (z=0.005) has been investigated for decades in different energy bands and shows radio lobes and a low luminosity active galactic nucleus (LLAGN). We use X-ray images from Chandra and radio images from Very Large Array (VLA) to explore the morphology of the central area. We also study the spectra of the nucleus and the surrounding region using observations from Chandra and XMM-Newton. We find diffuse soft X-ray radiation and hotspots along the radio lobes. The spectrum of the circum-nuclear region is well described by a thermal plasma (T~0.6 keV) and a power law with photon index Gamma~2.3. The nucleus shows a hard power law (Gamma~1.4) modified by complex absorption. A narrow iron K-alpha line is also clearly detected in all observations, but there is no evidence for relativistic reflection. The extended emission is consistent with originating from extended jets and from jet-triggered shocks in the surrounding medium. The hard power-law emission from the nucleus and the lack of relativistic reflection supports the scenario of inefficient accretion in an Advection Dominated Accretion Flow (ADAF).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا