No Arabic abstract
A theta surface in affine 3-space is the zero set of a Riemann theta function in genus 3. This includes surfaces arising from special plane quartics that are singular or reducible. Lie and Poincare showed that theta surfaces are precisely the surfaces of double translation, i.e. obtained as the Minkowski sum of two space curves in two different ways. These curves are parametrized by abelian integrals, so they are usually not algebraic. This paper offers a new view on this classical topic through the lens of computation. We present practical tools for passing between quartic curves and their theta surfaces, and we develop the numerical algebraic geometry of degenerations of theta functions.
We discuss the history of the monodromy theorem, starting from Weierstrass, and the concept of monodromy group. From this viewpoint we compare then the Weierstrass , the Legendre and other normal forms for elliptic curves, explaining their geometric meaning and distinguishing them by their stabilizer in P SL(2,Z) and their monodromy. Then we focus on the birth of the concept of the Jacobian variety, and the geometrization of the theory of Abelian functions and integrals. We end illustrating the methods of complex analysis in the simplest issue, the difference equation $f(z) = g(z+1) - g(z)$ on $mathbb C$.
We consider a family of surfaces of general type $S$ with $K_S$ ample, having $K^2_S = 24, p_g (S) = 6, q(S)=0$. We prove that for these surfaces the canonical system is base point free and yields an embedding $Phi_1 : S rightarrow mathbb{P}^5$. This result answers a question posed by G. and M. Kapustka. We discuss some related open problems, concerning also the case $p_g(S) = 5$, where one requires the canonical map to be birational onto its image.
We give a solution to the weak Schottky problem for genus five Jacobians with a vanishing theta null, answering a question of Grushevsky and Salvati Manni. More precisely, we show that if a principally polarized abelian variety of dimension five has a vanishing theta null with a quadric tangent cone of rank at most three, then it is in the Jacobian locus, up to extra irreducible components. We employ a degeneration argument, together with a study of the ramification loci for the Gauss map of a theta divisor.
This article investigates the subject of rigid compact complex manifolds. First of all we investigate the different notions of rigidity (local rigidity, global rigidity, infinitesimal rigidity, etale rigidity and strong rigidity) and the relations among them. Only for curves these notions coincide and the only rigid curve is the projective line. For surfaces we prove that a rigid surface which is not minimal of general type is either a Del Pezzo surface of degree >= 5 or an Inoue surface. We give examples of rigid manifolds of dimension n >= 3 and Kodaira dimensions 0, and 2 <=k <= n. Our main theorem is that the Hirzebruch Kummer coverings of exponent n >= 4 branched on a complete quadrangle are infinitesimally rigid. Moreover, we pose a number of questions.
The Quillen connection on ${mathcal L} rightarrow {mathcal M}_g$, where ${mathcal L}^*$ is the Hodge line bundle over the moduli stack of smooth complex projective curves curves ${mathcal M}_g$, $g geq 5$, is uniquely determined by the condition that its curvature is the Weil--Petersson form on ${mathcal M}_g$. The bundle of holomorphic connections on ${mathcal L}$ has a unique holomorphic isomorphism with the bundle on ${mathcal M}_g$ given by the moduli stack of projective structures. This isomorphism takes the $C^infty$ section of the first bundle given by the Quillen connection on ${mathcal L}$ to the $C^infty$ section of the second bundle given by the uniformization theorem. Therefore, any one of these two sections determines the other uniquely.