Do you want to publish a course? Click here

Non-collinear rotational Doppler effect

65   0   0.0 ( 0 )
 Added by Aleksandr Bekshaev
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The frequency shift of a helical light beam experiencing the rotation near the axis deferring from its own axis (conical evolution) is studied theoretically. Both the energy and the kinematic approaches lead to a paradoxical conclusion that after a whole cycle of the system rotation the beam does not return to its initial state. Another paradox is manifested in the peculiar behavior of the beam transverse pattern rotation at different geometric parameters of the evolving system. A fundamental role of the detecting system motion is substantiated. The special natural observers motion is found for which both paradoxes are eliminated. Relations of the described facts with the Hannays geometric phase concept are discussed.



rate research

Read More

108 - Amit Halder 2002
A monochromatic linear source of light is rotated with certain angular frequency and when such light is analysed after reflection then a change of frequency or wavelength may be observed depending on the location of the observer. This change of frequency or wavelength is different from the classical Doppler effect [1] or relativistic Doppler effect [2]. The reason behind this shift in wavelength is that a certain time interval observed by an observer in the rotating frame is different from that of a stationary observer.
We propose and substantiate experimentally the cascaded rotational Doppler effect for interactions of spinning objects with light carrying angular momentum. Based on the law of parity conservation for electromagnetic interactions, we reveal that the frequency shift can be doubled through cascading two rotational Doppler processes which are mirror-imaged to each other. This effect is further experimentally verified with a rotating half-wave plate, and the mirror-imaging process is achieved by reflecting the frequency-shifted circularly polarized wave upon a mirror with a quarter-wave plate in front of it. The mirror symmetry and thus parity conservation guarantees that this doubled frequency shift can be further multiplied with more successive mirror-imaging conjugations, with photons carrying spin and/or orbital angular momentum, which could be widely applied for detection of rotating systems ranging from molecules to celestial bodies with high precision and sensitivity.
Doppler cooling is a widely used technique to laser cool atoms and nanoparticles exploiting the Doppler shift involved in translational transformations. The rotational Doppler effect arising from rotational coordinate transformations should similarly enable optical manipulations of the rotational degrees of freedom in rotating nanosystems. Here, we show that rotational Doppler cooling and heating (RDC and RDH) effects embody rich and unexplored physics, such as a strong dependence on particle morphology. For geometrically confined particles, such as a nanorod that can represent diatomic molecules, RDC and RDH follow similar rules as their translational Doppler counterpart, where cooling and heating are always observed at red- or blue-detuned laser frequencies, respectively. Surprisingly, nanosystems that can be modeled as a solid particle shows a strikingly different response, where RDH appears in a frequency regime close to their resonances, while a detuned frequency produces cooling of rotation. We also predict that the RDH effect can lead to unprecedented spontaneous chiral symmetry breaking, whereby an achiral particle under linearly polarized illumination starts spontaneously rotating, rendering it nontrivial compared to the translational Doppler effect. Our results open up new exciting possibilities to control the rotational motion of molecules and nanoparticles.
The function to measure orbital angular momentum (OAM) distribution of vortex light is essential for OAM applications. Although there are lots of works to measure OAM modes, it is difficult to measure the power distribution of different OAM modes quantitatively and instantaneously, let alone measure the phase distribution among them. In this work, we demonstrate an OAM complex spectrum analyzer, which enables to measure the power and phase distribution of OAM modes simultaneously by employing rotational Doppler Effect. The original OAM mode distribution is mapped to electrical spectrum of beating signals with a photodetector. The power distribution and phase distribution of superimposed OAM beams are successfully retrieved by analyzing the electrical spectrum. We also extend the measurement to other spatial modes, such as linear polarization modes. These results represent a new landmark of spatial mode analysis and show great potentials in optical communication and OAM quantum state tomography.
232 - Z. Z. Du , H. M. Liu , Y. L. Xie 2015
The Casimir effect is a general phenomenon in physics, which arises when the vacuum fluctuation of an arbitrary field is modified by static or slowly varying boundary. However, its spin version is rarely addressed, mainly due to the fact that a macroscopic boundary in quantum spin systems is hard to define. In this article, we explore the spin Casimir effect induced by the zero-point fluctuation of spin waves in a general non-collinear ordered quantum antiferromagnet. This spin Casimir effect results in a spin torque between local spins and further causes various singular and divergent results in the framework of spin-wave theory, which invalidate the standard $1/S$ expansion procedure. To avoid this dilemma, we develop a self-consistent spin-wave expansion approach, which preserves the spin-wave expansion away from singularities and divergence. A detailed spin-wave analysis of the antiferromagnetic spin-1/2 Heisenberg model on a spatially anisotropic triangular lattice is undertaken within our approach. Our results indicate that the spiral order is only stable in the region $0.5<alpha<1.2$, where $alpha$ is the ratio of the coupling constants. In addition, the instability in the region $1.2<alpha<2$ is owing to the spin Casimir effect instead of the vanishing sublattice magnetization. And this extended spiral instable region may host some quantum disordered phases besides the quantum order by disorder induced Neel phase. Furthermore, our method provides an efficient and convenient tool that can estimate the correct exchange parameters and outline the quantum phase diagrams, which can be useful for experimental fitting processes in frustrated quantum magnets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا