Do you want to publish a course? Click here

All-inclusive interacting dark sector cosmologies

82   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we explore possible extensions of Interacting Dark Energy cosmologies, where Dark Energy and Dark Matter interact non-gravitationally with one another. In particular, we focus on the neutrino sector, analyzing the effect of both neutrino masses and the effective number of neutrino species. We consider the Planck 2018 legacy release data combined with several other cosmological probes, finding no evidence for new physics in the dark radiation sector. The current neutrino constraints from cosmology should be therefore regarded as robust, as they are not strongly dependent on the dark sector physics, once all the available observations are combined. Namely, we find a total neutrino mass $M_ u<0.15$ eV and a number of effective relativistic degrees of freedom of $N_{rm eff}=3.03^{+0.33}_{-0.33}$, both at 95% CL, which are close to those obtained within the $Lambda$CDM cosmology, $M_ u<0.12$ eV and $N_{rm eff}=3.00^{+0.36}_{-0.35}$ for the same data combination.



rate research

Read More

We consider an interacting field theory model that describes the interaction between dark energy - dark matter interaction. Only for a specific interaction term, this interacting field theory description has an equivalent interacting fluid description. For inverse power law potentials and linear interaction function, we show that the interacting dark sector model is consistent with $textit{four cosmological data sets}$ -- Hubble parameter measurements (Hz), Baryonic Acoustic Oscillation data (BAO), Supernova Type Ia data (SN), and High redshift HII galaxy measurements (HIIG). More specifically, these data sets prefer a negative value of interaction strength in the dark sector and lead to the best-fit value of Hubble constant $H_0 = 69.9^{0.46}_{1.02}$ km s$^{-1}$ Mpc$^{-1}$. Thus, the interacting field theory model $textit{alleviates the Hubble tension}$ between Planck and these four cosmological probes. Having established that this interacting field theory model is consistent with cosmological observations, we obtain quantifying tools to distinguish between the interacting and non-interacting dark sector scenarios. We focus on the variation of the scalar metric perturbed quantities as a function of redshift related to structure formation, weak gravitational lensing, and the integrated Sachs-Wolfe effect. We show that the difference in the evolution becomes significant for $z < 20$, for all length scales, and the difference peaks at smaller redshift values $z < 5$. We then discuss the implications of our results for the upcoming missions.
Up-to-date cosmological data analyses have shown that textit{(a)} a closed universe is preferred by the Planck data at more than $99%$ CL, and textit{(b)} interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the $H_0$ problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations.
A phenomenological attempt at alleviating the so-called coincidence problem is to allow the dark matter and dark energy to interact. By assuming a coupled quintessence scenario characterized by an interaction parameter $epsilon$, we investigate the precision in the measurements of the expansion rate $H(z)$ required by future experiments in order to detect a possible deviation from the standard $Lambda$CDM model ($epsilon = 0$). We perform our analyses at two levels, namely: through Monte Carlo simulations based on $epsilon$CDM models, in which $H(z)$ samples with different accuracies are generated and through an analytic method that calculates the error propagation of $epsilon$ as a function of the error in $H(z)$. We show that our analytical approach traces simulations accurately and find that to detect an interaction {using $H(z)$ data only, these must reach an accuracy better than 1%.
193 - Rong-Gen Cai , Qiping Su 2009
It is possible that there exist some interactions between dark energy (DE) and dark matter (DM), and a suitable interaction can alleviate the coincidence problem. Several phenomenological interacting forms are proposed and are fitted with observations in the literature. In this paper we investigate the possible interaction in a way independent of specific interacting forms by use of observational data (SNe, BAO, CMB and Hubble parameter). We divide the whole range of redshift into a few bins and set the interacting term $delta(z)$ to be a constant in each redshift bin. We consider four parameterizations of the equation of state $w_{de}$ for DE and find that $delta(z)$ is likely to cross the non-interacting ($delta=0$) and have an oscillation form. It suggests that to study the interaction between DE and DM, more general phenomenological forms of the interacting term should be considered.
We present a phase-space analysis of the qualitative dynamics cosmologies where dark matter exchanges energy with the vacuum component. We find fixed points corresponding to power-law solutions where the different components remain a constant fraction of the total energy density and given an existence condition for any fixed points with nonvanishing energy transfer. For some interaction models we find novel fixed points in the presence of a third noninteracting fluid with constant equation of state, such as radiation, where the interacting vacuum+matter tracks the evolution of the third fluid, analogous to tracker solutions previously found for self-interacting scalar fields. We illustrate the phase-plane behavior, determining the equation of state and stability of the fixed points in the case of a simple linear interaction model, for interacting vacuum and dark matter, including the presence of noninteracting radiation. We give approximate solutions for the equation of state in matter- or vacuum-dominated solutions in the case of small interaction parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا