No Arabic abstract
Observational and theoretical work has now established that the fossil fields of magnetic massive stars are surviving remnants from an earlier event, or an earlier evolutionary phase. However, many important questions remain regarding the effects of these fields on the late stages of stellar evolution, as well as their impact on the core-collapse mechanism and the formation of exotic compact objects such as magnetars and gravitational wave progenitors. There is currently a critical need to incorporate the impact of fossil fields in models of the structure and evolution of magnetic stars, and to determine the evolutionary history of magnetic massive stars. We present a preliminary population study of a cluster of co-evolving stars based on MESA evolutionary tracks that account for the effect of magnetic mass-loss quenching.
Supermassive primordial stars forming in atomically-cooled halos at $z sim15-20$ are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of $0.1 - 1$ $M_odot$ yr$^{-1}$ until the general relativistic instability triggers its collapse to a black hole at masses of $sim10^5$ $M_odot$. However, the ability of the accretion flow to sustain such high rates depends crucially on the photospheric properties of the accreting star, because its ionising radiation could reduce or even halt accretion. Here we present new models of supermassive Population III protostars accreting at rates $0.001 - 10$ $M_odot$ yr$^{-1}$, computed with the GENEVA stellar evolution code including general relativistic corrections to the internal structure. We use the polytropic stability criterion to estimate the mass at which the collapse occurs, which has been shown to give a lower limit of the actual mass at collapse in recent hydrodynamic simulations. We find that at accretion rates higher than $0.001$ $M_odot$ yr$^{-1}$ the stars evolve as red, cool supergiants with surface temperatures below $10^4$ K towards masses $>10^5$ $M_odot$, and become blue and hot, with surface temperatures above $10^5$ K, only for rates $lesssim0.001$ $M_odot$ yr$^{-1}$. Compared to previous studies, our results extend the range of masses and accretion rates at which the ionising feedback remains weak, reinforcing the case for direct collapse as the origin of the first quasars.
Magnetic massive and intermediate-mass stars constitute a separate population whose properties are still not fully understood. Increasing the sample of known objects of this type would help answer fundamental questions regarding the origins and characteristics of their magnetic fields. The MOBSTER Collaboration seeks to identify candidate magnetic A, B and O stars and explore the incidence and origins of photometric rotational modulation using high-precision photometry from the Transiting Exoplanet Survey Satellite (textit{TESS}) mission. In this contribution, we present an overview of our methods and planned targeted spectropolarimetric follow-up surveys.
Magnetic confinement of the winds of hot, massive stars has far-reaching consequences on timescales ranging from hours to Myr. Understanding the long-term effects of this interplay has already led to the identification of two new evolutionary pathways to form `heavy stellar mass black holes and pair-instability supernova even at galactic metallicity. We are performing 1D stellar evolution model calculations that, for the first time, account for the surface effects and the time evolution of fossil magnetic fields. These models will be thoroughly confronted with observations and will potentially lead to a significant revision of the derived parameters of observed magnetic massive stars.
Over the past decade, the numerical modeling of the magnetic field evolution in astrophysical scenarios has become an increasingly important field. In the crystallized crust of neutron stars the evolution of the magnetic field is governed by the Hall induction equation. In this equation the relative contribution of the two terms (Hall term and Ohmic dissipation) varies depending on the local conditions of temperature and magnetic field strength. This results in the transition from the purely parabolic character of the equations to the hyperbolic regime as the magnetic Reynolds number increases, which presents severe numerical problems. Up to now, most attempts to study this problem were based on spectral methods, but they failed in representing the transition to large magnetic Reynolds numbers. We present a new code based on upwind finite differences techniques that can handle situations with arbitrary low magnetic diffusivity and it is suitable for studying the formation of sharp current sheets during the evolution. The code is thoroughly tested in different limits and used to illustrate the evolution of the crustal magnetic field in a neutron star in some representative cases. Our code, coupled to cooling codes, can be used to perform long-term simulations of the magneto-thermal evolution of neutron stars.
The surface rotation rates of young solar-type stars decrease rapidly with age from the end of the pre-main sequence though the early main sequence. This suggests that there is also an important change in the dynamos operating in these stars, which should be observable in their surface magnetic fields. Here we present early results in a study aimed at observing the evolution of these magnetic fields through this critical time period. We are observing stars in open clusters and stellar associations to provide precise ages, and using Zeeman Doppler Imaging to characterize the complex magnetic fields. Presented here are results for six stars, three in the in the beta Pic association (~10 Myr old) and three in the AB Dor association (~100 Myr old).