Do you want to publish a course? Click here

Properties of M Dwarf Flares at Millimeter Wavelengths

101   0   0.0 ( 0 )
 Added by Meredith MacGregor
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on two millimeter flares detected by ALMA at 220 GHz from AU Mic, a nearby M dwarf. The larger flare had a duration of only $sim35$ sec, with peak $L_{R}=2times10^{15}$ erg s$^{-1}$ Hz$^{-1}$, and lower limit on linear polarization of $|Q/I|>0.12pm0.04$. We examine the characteristics common to these new AU Mic events and those from Proxima Cen previously reported in MacGregor et al. (2018) - namely short durations, negative spectral indices, and significant linear polarization - to provide new diagnostics of conditions in outer stellar atmospheres and details of stellar flare particle acceleration. The event rates ($sim20$ and $4$ events day$^{-1}$ for AU Mic and Proxima Cen, respectively) suggest that millimeter flares occur commonly but have been undetected until now. Analysis of the flare observing frequency and consideration of possible incoherent emission mechanisms confirms the presence of MeV electrons in the stellar atmosphere occurring as part of the flare process. The spectral indices point to a hard distribution of electrons. The short durations and lack of pronounced exponential decay in the light curve are consistent with formation in a simple magnetic loop, with radio emission predominating from directly precipitating electrons. We consider the possibility of both synchrotron and gyrosynchrotron emission mechanisms, although synchrotron is favored given the linear polarization signal. This would imply that the emission must be occurring in a low density environment of only modest magnetic field strength. A deeper understanding of this newly discovered and apparently common stellar flare mechanism awaits more observations with better-studied flare components at other wavelengths.



rate research

Read More

We present the results of an observational campaign which obtained high time cadence, high precision, simultaneous optical and IR photometric observations of three M dwarf flare stars for 47 hours. The campaign was designed to characterize the behavior of energetic flare events, which routinely occur on M dwarfs, at IR wavelengths to milli-magnitude precision, and quantify to what extent such events might influence current and future efforts to detect and characterize extrasolar planets surrounding these stars. We detected and characterized four highly energetic optical flares having U-band total energies of ~7.8x10^30 to ~1.3x10^32 ergs, and found no corresponding response in the J, H, or Ks bandpasses at the precision of our data. For active dM3e stars, we find that a ~1.3x10^32 erg U-band flare (delta Umax ~1.5 mag) will induce <8.3 (J), <8.5 (H), and <11.7 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 18 hours. For active dM4.5e stars, we find that a ~5.1x10^31 erg U-band flare (delta Umax ~1.6 mag) will induce <7.8 (J), <8.8 (H), and <5.1 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 10 hours. No evidence of stellar variability not associated with discrete flare events was observed at the level of ~3.9 milli-mags over 1 hour time-scales and at the level of ~5.6 milli-mags over 7.5 hour time-scales. We therefore demonstrate that most M dwarf stellar activity and flares will not influence IR detection and characterization studies of M dwarf exoplanets above the level of ~5-11 milli-mags, depending on the filter and spectral type. We speculate that the most energetic megaflares on M dwarfs, which occur at rates of once per month, are likely to be easily detected in IR observations with sensitivity of tens of milli-mags.
We report multi-wavelength monitoring observations of an M-dwarf flare star AD Leonis with Seimei Telescope (6150--7930 {AA}), SCAT (Spectroscopic Chuo-university Astronomical Telescope; 3700--7500 {AA}), NICER (Neutron Star Interior Composition Explorer; 0.2--12.0 keV), and collaborations of OISTER (Optical and Infrared Synergetic Telescopes for Education and Research) program. Twelve flares are detected in total which include ten H$alpha$, four X-ray, and four optical-continuum flares; one of them is a superflare with the total energy of $sim$ 2.0$times$10$^{33}$ erg. We found that (1) during the superflare, the H$alpha$ emission line full width at 1/8 maximum dramatically increases to 14 {AA} from 8 {AA} in the low-resolution spectra (R$sim$ 2000) accompanied with the large white-light flares, (2) some weak H$alpha$/X-ray flares are not accompanied with white-light emissions, and (3) the non-flaring emissions show clear rotational modulations in X-ray and H$alpha$ intensity in the same phase. To understand these observational features, one-dimensional hydrodynamic flare simulations are performed by using the RADYN code. As a result of simulations, we found the simulated H$alpha$ line profiles with hard and high-energy non-thermal electron beams are consistent with that of the initial phase line profiles of the superflares, while those with more soft- and/or weak-energy beam are consistent with those in decay phases, indicating the changes in the energy fluxes injected to the lower atmosphere. Also, we found that the relation between optical continuum and H$alpha$ intensity is nonlinear, which can be one cause of the non-white-light flares. The flare energy budget exhibits diversity in the observations and models, and more observations of stellar flares are necessary for constraining the occurrence of various emission line phenomena in stellar flares.
We present results of high-resolution imaging toward HL Tau by the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have obtained 1.3 and 2.7 mm dust continua with an angular resolution down to 0.13 arc second. Through model fitting to the two wavelength data simultaneously in Bayesian inference using a flared viscous accretion disk model, we estimate the physical properties of HL Tau, such as density distribution, dust opacity spectral index, disk mass, disk size, inclination angle, position angle, and disk thickness. HL Tau has a circumstellar disk mass of 0.13 solar mass, a characteristic radius of 79 AU, an inclination of 40 degree, and a position angle of 136 degree. Although a thin disk model is preferred by our two wavelength data, a thick disk model is needed to explain the high mid- and far-infrared emission of the HL Tau spectral energy distribution. This could imply large dust grains settled down on the mid plane with fine dust grains mixed with gas. The HL Tau disk is likely gravitationally unstable and can be fragmented between 50 and 100 AU of radius. However, we did not detect dust thermal continuum supporting the protoplanet candidate claimed by a previous study using observations of the Very Large Array at 1.3 cm.
115 - A. M. Hughes 2012
Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with higher sensitivity has disputed the observed structure. We present three new millimeter-wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 um and angular resolution of 5; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and angular resolution of 5; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10. Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3-sigma) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained. We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20-100 AU and width >50 AU. The interferometric data require that at least half of the 860 um emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of <100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious.
69 - D. J. Mullan , H. P. Bais 2018
On planets near M dwarfs, photosynthesis (PS) will occur with an effectiveness which depends on the supply of visible photons with wavelengths between 400 and 700 nm. In this paper, we quantify the effectiveness of PS in two contexts which are relevant for M dwarfs. First, using photons from an M dwarf in its quiescent non-flaring state, we find that PS on an M dwarf planet in the HZ of its parent star is less effective than on Earth by a factor of 10 for a flare star with mid-M spectral type. For a flare star with late-M spectral type, PS effectiveness is smaller than on Earth by a factor of 100 or more. Second, using photons which are incident on the HZ planet during flares, we find that PS effectiveness can increase by factors of 5-20 above the quiescent values. In the case of a flare star with mid-M spectral type, we find that the PS effectiveness during a flare can increase up to as much as 50-60 percent of the values on Earth. However, for a late-M flare star, even during flares, the PS effectiveness remains almost one order of magnitude smaller than on Earth. We suggest that for biological processes on M dwarf planets, the stellar activity cycle may replace the orbital period as the year.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا