No Arabic abstract
We present rotation curve fits to 175 late-type galaxies from the Spitzer Photometry & Accurate Rotation Curves (SPARC) database using seven dark matter (DM) halo profiles: pseudo-isothermal (pISO), Burkert, Navarro-Frenk-White (NFW), Einasto, Di Cintio (2014, DC14), coreNFW, and a new semi-empirical profile named Lucky13. We marginalize over stellar mass-to-light ratio, galaxy distance, disk inclination, halo concentration and halo mass (and an additional shape parameter for Einasto) using a Markov Chain Monte Carlo method. We find that cored halo models such as the DC14 and Burkert profiles generally provide better fits to rotation curves than the cuspy NFW profile. The stellar mass-halo mass relation from abundance matching is recovered by all halo profiles once imposed as a Bayesian prior, whereas the halo mass-concentration relation is not reproduced in detail by any halo model. We provide an extensive set of figures as well as best-fit parameters in machine-readable tables to facilitate model comparison and the exploration of DM halo properties.
The cusp-core problem is one of the main challenges of the cold dark matter paradigm on small scales: the density of a dark matter halo is predicted to rise rapidly toward the center as rho ~ r^alpha with alpha between -1 and -1.5, while such a cuspy profile has not been clearly observed. We have carried out the spatially-resolved mapping of gas dynamics toward a nearby ultra-diffuse galaxy (UDG), AGC 242019. The derived rotation curve of dark matter is well fitted by the cuspy profile as described by the Navarro-Frenk-White model, while the cored profiles including both the pseudo-isothermal and Burkert models are excluded. The halo has alpha=-(0.90+-0.08) at the innermost radius of 0.67 kpc, Mhalo=(3.5+-1.2)E10 Msun and a small concentration of 2.0+-0.36. AGC 242019 challenges alternatives of cold dark matter by constraining the particle mass of fuzzy dark matter to be < 0.11E-22 eV or > 3.3E-22 eV , the cross section of self-interacting dark matter to be < 1.63 cm2/g, and the particle mass of warm dark matter to be > 0.23 keV, all of which are in tension with other constraints. The modified Newtonian dynamics is also inconsistent with a shallow radial acceleration relationship of AGC 242019. For the feedback scenario that transforms a cusp to a core, AGC 242019 disagrees with the stellar-to-halo-mass-ratio dependent model, but agrees with the star-formation-threshold dependent model. As a UDG, AGC 242019 is in a dwarf-size halo with weak stellar feedback, late formation time, a normal baryonic spin and low star formation efficiency (SFR/gas).
For idealized (spherical, smooth) dark matter halos described by single-parameter density profiles (such as the NFW profile) there exists a one-to-one mapping between the energy of the halo and the scale radius of its density profile. The energy therefore uniquely determines the concentration parameter of such halos. We exploit this fact to predict the concentrations of dark matter halos via a random walk in halo energy space. Given a full merger tree for a halo, the total internal energy of each halo in that tree is determined by summing the internal and orbital energies of progenitor halos. We show that, when calibrated, this model can accurately reproduce the mean of the concentration--mass relation measured in N-body simulations, and reproduces more of the scatter in that relation than previous models. We further test this model by examining both the autocorrelation of scale radii across time, and the correlations between halo concentration and spin, and comparing to results measured from cosmological N-body simulations. In both cases we find that our model closely matches the N-body results. Our model is implemented within the open source Galacticus toolkit.
We investigate a sub-sample of the rotation curves consisting of 45 HSB non-bulgy spiral galaxies selected from SPARC (Spitzer Photometry and Accurate Rotation Curves) database by using two dark halo models (NFW and Burkert) and MOdified Newtonian Dynamics (MOND) theory. Among these three models, the core-dominated Burkert halo model provides a better description of the observed data ($chi_{ u}^2$ = 0.33) than Navarro, Frenk and White (NFW, $chi_{ u}^2$= 0.45) and MOND model ($chi_{ u}^2$ = 0.58). So our results show that, for dark halo models, the selected 45 HSB non-bulgy spiral galaxies prefer a cored density profile to the cuspy one (NFW); We also positively find that there is a correlation between $rho_0$ and $r_0$ in Burkert model. For MOND fits, when we take $a_0$ as a free parameter, there is no obvious correlation between $a_0$ and disk central surface brightness at 3.6 $mu m$ of these HSB spiral galaxies, which is in line with the basic assumption of MOND that $a_0$ should be a universal constant. Interestingly, our fittings gives $a_0$ an average value of $(0.74 pm 0.45) times 10^{- 8}rm {cm s^{- 2}}$ if we exclude the three highest values in the sample, which is smaller than the standard value ($1.21 times 10^{-8}rm {cm s^{- 2}}$).
We investigate the mass content of galaxies in the core of the galaxy cluster Abell 611. We perform a strong lensing analysis of the cluster core and use velocity dispersion measurements for individual cluster members as additional constraints. Despite the small number of multiply-imaged systems and cluster members with central velocity dispersions available in the core of A611, the addition of velocity dispersion measurements leads to tighter constraints on the mass associated with the galaxy component, and as a result, on the mass associated with the dark matter halo. Without the spectroscopic velocity dispersions, we would overestimate the mass of the galaxy component by a factor of $sim1.5$, or, equivalently, we would underestimate the mass of the cluster dark halo by $sim5%$. We perform an additional lensing analysis using surface brightness (SB) reconstruction of the tangential giant arc. This approach improves the constraints on the mass parameters of the 5 galaxies close to the arc by up to a factor $sim10$. The galaxy velocity dispersions resulting from the SB analysis are consistent at the 1$sigma$ confidence level with the spectroscopic measurements and with the prediction from the simple pointlike analysis. In contrast the truncation radii for 2-3 galaxies depart significantly from the galaxy scaling relation and suggest differences in the stripping history from galaxy to galaxy.
We introduce SPARC (Spitzer Photometry & Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 um and high-quality rotation curves from previous HI/Halpha studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (~5 dex), and surface brightnesses (~4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass-HI mass relation and the stellar radius-HI radius relation have significant intrinsic scatter, while the HI mass-radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic-to-observed velocity (Vbar/Vobs) for different characteristic radii and values of the stellar mass-to-light ratio (M/L) at [3.6]. Assuming M/L=0.5 Msun/Lsun (as suggested by stellar population models) we find that (i) the gas fraction linearly correlates with total luminosity, (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars in line with density wave theory; and (iii) Vbar/Vobs varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of M/L=0.2 Msun/Lsun as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is M/L=0.7 Msun/Lsun at [3.6]. The SPARC data are publicly available and represent an ideal test-bed for models of galaxy formation.