Do you want to publish a course? Click here

Identifying Mislabeled Data using the Area Under the Margin Ranking

89   0   0.0 ( 0 )
 Added by Geoff Pleiss
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Not all data in a typical training set help with generalization; some samples can be overly ambiguous or outrightly mislabeled. This paper introduces a new method to identify such samples and mitigate their impact when training neural networks. At the heart of our algorithm is the Area Under the Margin (AUM) statistic, which exploits differences in the training dynamics of clean and mislabeled samples. A simple procedure - adding an extra class populated with purposefully mislabeled threshold samples - learns a AUM upper bound that isolates mislabeled data. This approach consistently improves upon prior work on synthetic and real-world datasets. On the WebVision50 classification task our method removes 17% of training data, yielding a 1.6% (absolute) improvement in test error. On CIFAR100 removing 13% of the data leads to a 1.2% drop in error.



rate research

Read More

Expanding the receptive field to capture large-scale context is key to obtaining good performance in dense prediction tasks, such as human pose estimation. While many state-of-the-art fully-convolutional architectures enlarge the receptive field by reducing resolution using strided convolution or pooling layers, the most straightforward strategy is adopting large filters. This, however, is costly because of the quadratic increase in the number of parameters and multiply-add operations. In this work, we explore using learnable box filters to allow for convolution with arbitrarily large kernel size, while keeping the number of parameters per filter constant. In addition, we use precomputed summed-area tables to make the computational cost of convolution independent of the filter size. We adapt and incorporate the box filter as a differentiable module in a fully-convolutional neural network, and demonstrate its competitive performance on popular benchmarks for the task of human pose estimation.
The identification and quantification of markers in medical images is critical for diagnosis, prognosis and management of patients in clinical practice. Supervised- or weakly supervised training enables the detection of findings that are known a priori. It does not scale well, and a priori definition limits the vocabulary of markers to known entities reducing the accuracy of diagnosis and prognosis. Here, we propose the identification of anomalies in large-scale medical imaging data using healthy examples as a reference. We detect and categorize candidates for anomaly findings untypical for the observed data. A deep convolutional autoencoder is trained on healthy retinal images. The learned model generates a new feature representation, and the distribution of healthy retinal patches is estimated by a one-class support vector machine. Results demonstrate that we can identify pathologic regions in images without using expert annotations. A subsequent clustering categorizes findings into clinically meaningful classes. In addition the learned features outperform standard embedding approaches in a classification task.
We present a hierarchical maximum-margin clustering method for unsupervised data analysis. Our method extends beyond flat maximum-margin clustering, and performs clustering recursively in a top-down manner. We propose an effective greedy splitting criteria for selecting which cluster to split next, and employ regularizers that enforce feature sharing/competition for capturing data semantics. Experimental results obtained on four standard datasets show that our method outperforms flat and hierarchical clustering baselines, while forming clean and semantically meaningful cluster hierarchies.
We investigate the problem of machine learning with mislabeled training data. We try to make the effects of mislabeled training better understood through analysis of the basic model and equations that characterize the problem. This includes results about the ability of the noisy model to make the same decisions as the clean model and the effects of noise on model performance. In addition to providing better insights we also are able to show that the Maximum Likelihood (ML) estimate of the parameters of the noisy model determine those of the clean model. This property is obtained through the use of the ML invariance property and leads to an approach to developing a classifier when training has been mislabeled: namely train the classifier on noisy data and adjust the decision threshold based on the noise levels and/or class priors. We show how our approach to mislabeled training works with multi-layered perceptrons (MLPs).
This paper is concerned with ranking many pre-trained deep neural networks (DNNs), called checkpoints, for the transfer learning to a downstream task. Thanks to the broad use of DNNs, we may easily collect hundreds of checkpoints from various sources. Which of them transfers the best to our downstream task of interest? Striving to answer this question thoroughly, we establish a neural checkpoint ranking benchmark (NeuCRaB) and study some intuitive ranking measures. These measures are generic, applying to the checkpoints of different output types without knowing how the checkpoints are pre-trained on which dataset. They also incur low computation cost, making them practically meaningful. Our results suggest that the linear separability of the features extracted by the checkpoints is a strong indicator of transferability. We also arrive at a new ranking measure, NLEEP, which gives rise to the best performance in the experiments.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا