No Arabic abstract
The mass function for black holes and neutron stars at birth is explored for mass-losing helium stars. These should resemble, more closely than similar studies of single hydrogen-rich stars, the results of evolution in close binary systems. The effects of varying the mass-loss rate and metallicity are calculated using a simple semi-analytic approach to stellar evolution that is tuned to reproduce detailed numerical calculations. Though the total fraction of black holes made in stellar collapse events varies considerably with metallicity, mass-loss rate, and mass cutoff, from 5$%$ to 30$%$, the shapes of their birth functions are very similar for all reasonable variations in these quantities. Median neutron star masses are in the range 1.32 - 1.37 $M_odot$ regardless of metallicity. The median black hole mass for solar metallicity is typically 8 to 9 $M_odot$ if only initial helium cores below 40 $M_odot$ (ZAMS mass less than 80 $M_odot$) are counted, and 9 - 13 $M_odot$, in most cases, if helium cores with initial masses up to 150 $M_odot$ (ZAMS mass less than 300 $M_odot$) contribute. As long as the mass-loss rate as a function of mass exhibits no strong non-linearities, the black hole birth function from 15 to 35 $M_odot$ has a slope that depends mostly on the initial mass function for main sequence stars. These findings imply the possibility of constraining the initial mass function and the properties of mass loss in close binaries using ongoing measurements of gravitational wave radiation. The expected rotation rates of the black holes are briefly discussed.
The discovery of GW signal from merging neutron stars by LIGO on 17th August 2017 was followed by a short GRB170817A discovered by FERMI and INTEGRAL 1.7 seconds after the loss of the GW signal when it just reached its maximum. Here we present a reproduction of the first paper (published by us in 1984) predicting a short GRB after GW signal of merging neutron stars. Our paper followed the scenario by Clark and Eardley (1977) who predicted a catastrophic disruption of a neutron star in a binary 1.7 seconds after the peak of GW signal. Our next paper in 1990 predicted all the main properties of the short GRB with quite a reasonable accuracy. Typos in English translation are corrected and a few comments are added in the current publication as numbered footnotes (the only footnote from the original paper is marked by an asterisk).
It is now clear that a subset of supernovae display evidence for jets and are observed as gamma-ray bursts. The angular momentum distribution of massive stellar endpoints provides a rare means of constraining the nature of the central engine in core-collapse explosions. Unlike supermassive black holes, the spin of stellar-mass black holes in X-ray binary systems is little affected by accretion, and accurately reflects the spin set at birth. A modest number of stellar-mass black hole angular momenta have now been measured using two independent X-ray spectroscopic techniques. In contrast, rotation-powered pulsars spin-down over time, via magnetic braking, but a modest number of natal spin periods have now been estimated. For both canonical and extreme neutron star parameters, statistical tests strongly suggest that the angular momentum distributions of black holes and neutron stars are markedly different. Within the context of prevalent models for core-collapse supernovae, the angular momentum distributions are consistent with black holes typically being produced in GRB-like supernovae with jets, and with neutron stars typically being produced in supernovae with too little angular momentum to produce jets via magnetohydrodynamic processes. It is possible that neutron stars are imbued with high spin initially, and rapidly spun-down shortly after the supernova event, but the available mechanisms may be inconsistent with some observed pulsar properties.
Black holes in binary star systems are vital for understanding the process of pr oducing gravitational wave sources, understanding how supernovae work, and for p roviding fossil evidence for the high mass stars from earlier in the Universe. At the present time, sample sizes of these objects, and especially of black hole s in binaries, are quite limited. Furthermore, more precise measurements of the binary parameters are needed, as well. With improvements primarily in X-ray an d radio astronomy capabilities, it should be possible to build much larger sampl es of much better measured black hole binaries.
Aims. Large radial velocity variations in the LAMOST spectra of giant stars have been used to infer the presence of unseen companions. Some of them have been proposed as possible black hole candidates. We test this selection by investigating the classification of the one candidate having a known X-ray counterpart (UCAC4 721-037069). Methods. We obtained time-resolved spectra from the Liverpool Telescope and a 5ks observation from the Chandra observatory to fully constrain the orbital parameters and the X-ray emission of this system. Results. We find the source to be an eclipsing stellar binary that can be classified as a RS CVn. The giant star fills its Roche Lobe and the binary mass ratio is greater than one. The system may be an example of stable mass transfer from an intermediate-mass star with a convective envelope. Conclusions. Using only radial velocity to identify black hole candidates can lead to many false positives. The presence of an optical orbital modulation, such as observed for all LAMOST candidates, will in most cases indicate that this is a stellar binary.
We investigate observable signatures of a first-order quantum chromodynamics (QCD) phase transition in the context of core collapse supernovae. To this end, we conduct axially symmetric numerical relativity simulations with multi-energy neutrino transport, using a hadron-quark hybrid equation of state (EOS). We consider four non-rotating progenitor models, whose masses range from $9.6$ to $70$,M$_odot$. We find that the two less massive progenitor stars (9.6 and 11.2,M$_odot$) show a successful explosion, which is driven by the neutrino heating. They do not undergo the QCD phase transition and leave behind a neutron star (NS). As for the more massive progenitor stars (50 and 70,M$_odot$), the proto-neutron star (PNS) core enters the phase transition region and experiences the second collapse. Because of a sudden stiffening of the EOS entering to the pure quark matter regime, a strong shock wave is formed and blows off the PNS envelope in the 50,M$_odot$ model. Consequently the remnant becomes a quark core surrounded by hadronic matters, leading to the formation of the hybrid star. However for the 70,M$_odot$ model, the shock wave cannot overcome the continuous mass accretion and it readily becomes a black hole. We find that the neutrino and gravitational wave (GW) signals from supernova explosions driven by the hadron-quark phase transition are detectable for the present generation of neutrino and GW detectors. Furthermore, the analysis of the GW detector response reveals unique kHz signatures, which will allow us to distinguish this class of supernova explosions from failed and neutrino-driven explosions.