No Arabic abstract
Detection and direct power conversion of high energy and high intensity ionizing radiation could be a key element in next generation nuclear reactor safety systems and space-born devices. For example, the Fukushima catastrophe in 2011 could have been largely prevented if 1% of the reactors remnant radiation ($gamma$-rays of the nuclear fission) were directly converted within the reactor to electricity to power the water cooling circuit. It is reported here that the hybrid halide perovskite methylammonium lead triiodide could perfectly play the role of a converter. Single crystals were irradiated by a typical shut-down $gamma$-spectrum of a nuclear reactor with 7.61E14 Bq activity exhibit a high-efficiency of $gamma$-ray to free charge carrier conversion with radiation hardening. The power density of 0.3 mW/kg of methylammonium lead triiodide at 50 Sv/h means a four times higher efficiency than that for silicon-based cells. The material was stable to the limits of the experiment without changing its performance up to 100 Sv/h dose rate and 57 Sv H*(10) ambient total $gamma$-dose. Moreover, the {gamma}-shielding performance of methylammonium lead triiodide was found to be superior to both ordinary and barite concrete.
We propose a solar thermal energy conversion system consisting of a solar absorber, a thermoradiative cell or negative illumination photodiode, and a photovoltaic cell. Because it is a heat engine, this system can also be paired with thermal storage to provide reliable electricity generation. Heat from the solar absorber drives radiative recombination current in the thermoradiative cell, and its emitted light is absorbed by the photovoltaic cell to provide an additional photocurrent. Based on the principle of detailed balance, we calculate a limiting solar conversion efficiency of 85% for fully concentrated sunlight and 45% for one sun with an absorber and single-junction cells of equal areas. Ideal and nonideal solar thermoradiative-photovoltaic systems outperform solar thermophotovoltaic converters for low bandgaps and practical absorber temperatures. Their performance enhancement results from a high tolerance to nonradiative generation/recombination and an ability to minimize radiative heat losses. We show that a realistic device with all major losses could achieve increases in solar conversion efficiency by up to 7.9% (absolute) compared to a solar thermophotovoltaic device under low optical concentration. Our results indicate that these converters could serve as efficient heat engines for low cost single axis tracking systems.
The paper presents the results of measurements of XPS valence band spectra of SiO2/MAPbI3 hybrid perovskites subjected to irradiation with visible light and annealing at an exposure of 0-1000 hours. It is found from XPS survey spectra that in both cases (irradiation and annealing) a decrease in the I:Pb ratio is observed with aging time, which unambiguously indicates PbI2 phase separation as a photo and thermal product of degradation. The comparison of the XPS valence band spectra of irradiated and annealed perovskites with density functional theory calculations of the MAPbI3 and PbI2 compounds have shown a systematic decrease in the contribution of I 5p-states and allowed us to determine the threshold for degradation, which is 500 hours for light irradiation and 200 hours for annealing.
The previously developed bistable amphoteric native defect (BAND) model is used for a comprehensive explanation of the unique photophysical properties and for understanding the remarkable performance of perovskites as photovoltaic materials. It is shown that the amphoteric defects in donor (acceptor) configuration capture a fraction of photoexcited electrons (holes) dividing them into two groups: higher energy bright and lower energy dark electrons (holes). The spatial separation of the dark electrons and the dark holes and the k-space separation of the bright and the dark charge carriers reduce electron hole recombination rates, emulating the properties of an ideal photovoltaic material with a balanced, spatially separated transport of electrons and holes. The BAND model also offers a straightforward explanation for the exceptional insensitivity of the photovoltaic performance of polycrystalline perovskite films to structural and optical inhomogeneities. The blue-shifted radiative recombination of bright electrons and holes results in a large anti-Stokes effect that provides a quantitative explanation for the spectral dependence of the laser cooling effect measured in perovskite platelets.
Standard laser based fire detection systems are often based on measuring variation of optical signal amplitude. However, mechanical noise interference and loss from dust and steam can obscure the detection signal, resulting in faulty results or inability to detect a potential fire. The presented fire detection technology will allow the detection of fire in harsh and dusty areas, which are prone to fires, where current systems show limited performance or are unable to operate. It is not the amount of light nor its wavelength that is used for detecting fire, but how the refractive index randomly fluctuates due to the heat convection from the fire. In practical terms this means that light obstruction from ambient dust particles will not be a problem as long as a small fraction of the light is detected and that fires without visible flames can still be detected. The standalone laser system consists of a Linux-based Red Pitaya system, a cheap 650 nm laser diode, and a PIN photo-detector. Laser light propagates through the monitored area and reflects off a retroreflector generating a speckle pattern. Every 3 seconds time traces and frequency noise spectra are measured and 8 descriptors are deduced to identify a potential fire. Both laboratory and factory acceptance tests have been performed with success.
Current approaches for electric power generation from nanoscale conducting or semi-conducting layers in contact with moving aqueous droplets are promising as they show efficiencies of around 30 percent, yet, even the most successful ones pose challenges regarding fabrication and scaling. Here, we report stable, all-inorganic single-element structures synthesized in a single step that generate electrical current when alternating salinity gradients flow along its surface in a liquid flow cell. 10 nm to 30 nm thin nanolayers of iron, vanadium, or nickel produce several tens of mV and several microA cm^-2 at aqueous flow velocities of just a few cm s^-1. The principle of operation is strongly sensitive to charge-carrier motion in the thermal oxide nano-overlayer that forms spontaneously in air and then self terminates. Indeed, experiments suggest a role for intra-oxide electron transfer for Fe, V, and Ni nanolayers, as their thermal oxides contain several metal oxidation states, whereas controls using Al or Cr nanolayers, which self-terminate with oxides that are redox inactive under the experimental conditions, exhibit dramatically diminished performance. The nanolayers are shown to generate electrical current in various modes of application with moving liquids, including sliding liquid droplets, salinity gradients in a flowing liquid, and in the oscillatory motion of a liquid without a salinity gradient.