Nature of the charge-density wave excitations in cuprates


Abstract in English

The discovery of charge-density wave (CDW)-related effects in the resonant inelastic x-ray scattering (RIXS) spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive RIXS study of La2-xSrxCuO4 (LSCO) finding that CDW effects persist up to a remarkably high doping level of x = 0.21 before disappearing at x = 0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross-section for phonons and CDW-induced phonon-softening. We interpret our results in terms of a CDW that is generated by strong correlations and a phonon response that is driven by the CDW-induced modification of the lattice.

Download