No Arabic abstract
Using an array of coupled microwave resonators arranged in a deformed honeycomb lattice, we experimentally observe the formation of pseudo-Landau levels in the whole crossover from vanishing to large pseudomagnetic field strength. This is achieved by utilizing an adaptable set-up in a geometry that is compatible with the pseudo-Landau levels at all field strengths. The adopted approach enables to observe fully formed flat-band pseudo-Landau levels spectrally as sharp peaks in the photonic density of states, and image the associated wavefunctions spatially, where we provide clear evidence for a characteristic nodal structure reflecting the previously elusive supersymmetry in the underlying low-energy theory. In particular, we resolve the full sublattice polarization of the anomalous 0th pseudo-Landau level, which reveals a deep connection to zigzag edge states in the unstrained case.
We describe the formation of superconducting states in graphene in the presence of pseudo-Landau levels induced by strain, when time reversal symmetry is preserved. We show that superconductivity in strained graphene is quantum critical when the pseudo-Landau levels are completely filled, whereas at partial fillings superconductivity survives at weak coupling. In the weak coupling limit, the critical temperature scales emph{linearly} with the coupling strength and shows a sequence of quantum critical points as a function of the filling factor that can be accessed experimentally. We argue that superconductivity can be induced by electron-phonon coupling and that the transition temperature can be controlled with the amount of strain and with the filling fraction of the Landau levels.
We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping gradient in the lattice, giving rise to the formation of Landau levels at the Dirac points. We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction, a distinctive feature of synthetic magnetic fields. Our realization implements helical edge states in the gap between n=0 and n=1 Landau levels, experimentally demonstrating a novel way of engineering propagating edge states in photonic lattices. In light of recent advances in the enhancement of polariton-polariton nonlinearities, the Landau levels reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic system.
Combining the tight-binding approximation and linear elasticity theory for a planar membrane, we investigate stretching of a graphene flake assuming that two opposite edges of the sample are clamped by the contacts. We show that, depending on the aspect ratio of the flake and its orientation, gapped states may form in the membrane in the vicinity of the contacts. This gap in the pre-contact region should be biggest for the armchair orientation of the flake and width to length ratio of around 1.
The degeneracy and spatial support of pseudo-Landau levels (pLLs) in strained honeycomb lattices systematically depends on the geometry -- for instance, in hexagonal and rectangular flakes the 0th pLL displays a twofold increased degeneracy, while the characteristic sublattice polarization of the 0th pLL is only fully realized in a zigzag-terminated triangle. These features are dictated by algebraic constraints in the atomistic theory, and signify a departure from the standard picture in which all qualitative differences between pLLs and Landau levels induced by a magnetic field trace back to the valley-antisymmetry of the pseudomagnetic field.
Motivated by theory and experiments on strain induced pseudo-Landau levels (LLs) of Dirac fermions in graphene and topological materials, we consider its extension for Bogoliubov quasiparticles (QPs) in a nodal superconductor (SC). We show, using an effective low energy description and numerical lattice calculations for a d-wave SC, that a spatial variation of the electronic hopping amplitude or a spatially varying s-wave pairing component can act as a pseudo-magnetic field for the Bogoliubov QPs, leading to the formation of pseudo-LLs. We propose realizations of this phenomenon in the cuprate SCs, via strain engineering in films or nanowires, or s-wave proximity coupling in the vicinity of a nematic instability, and discuss its signatures in tunneling experiments.