The inverse problem we consider is to reconstruct the location and shape of buried obstacles in the lower half-space of an unbounded two-layered medium in two dimensions from phaseless far-field data. A main difficulty of this problem is that the translation invariance property of the modulus of the far field pattern is unavoidable, which is similar to the homogenous background medium case. Based on the idea of using superpositions of two plane waves with different directions as the incident fields, we first develop a direct imaging method to locate the position of small anomalies and give a theoretical analysis of the algorithm. Then a recursive Newton-type iteration algorithm in frequencies is proposed to reconstruct extended obstacles. Finally, numerical experiments are presented to illustrate the feasibility of our algorithms.