Do you want to publish a course? Click here

Proximity and Remoteness in Directed and Undirected Graphs

140   0   0.0 ( 0 )
 Added by Gregory Gutin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Let $D$ be a strongly connected digraph. The average distance $bar{sigma}(v)$ of a vertex $v$ of $D$ is the arithmetic mean of the distances from $v$ to all other vertices of $D$. The remoteness $rho(D)$ and proximity $pi(D)$ of $D$ are the maximum and the minimum of the average distances of the vertices of $D$, respectively. We obtain sharp upper and lower bounds on $pi(D)$ and $rho(D)$ as a function of the order $n$ of $D$ and describe the extreme digraphs for all the bounds. We also obtain such bounds for strong tournaments. We show that for a strong tournament $T$, we have $pi(T)=rho(T)$ if and only if $T$ is regular. Due to this result, one may conjecture that every strong digraph $D$ with $pi(D)=rho(D)$ is regular. We present an infinite family of non-regular strong digraphs $D$ such that $pi(D)=rho(D).$ We describe such a family for undirected graphs as well.



rate research

Read More

141 - Adam Blumenthal 2019
In this paper, we study independent domination in directed graphs, which was recently introduced by Cary, Cary, and Prabhu. We provide a short, algorithmic proof that all directed acyclic graphs contain an independent dominating set. Using linear algebraic tools, we prove that any strongly connected graph with even period has at least two independent dominating sets, generalizing several of the results of Cary, Cary, and Prabhu. We prove that determining the period of the graph is not sufficient to determine the existence of an independent dominating set by constructing a few examples of infinite families of graphs. We show that the direct analogue of Vizings Conjecture does not hold for independent domination number in directed graphs by providing two infinite families of graphs. We initialize the study of time complexity for independent domination in directed graphs, proving that the existence of an independent dominating set in directed acyclic graphs and strongly connected graphs with even period are in the time complexity class $P$. We also provide an algorithm for determining existence of an independent dominating set for digraphs with period greater than $1$.
Let $G$ be a directed graph such that the in-degree of any vertex $G$ is at least one. Let also ${mathcal{tau}}: V(G)rightarrow Bbb{N}$ be an assignment of thresholds to the vertices of $G$. A subset $M$ of vertices of $G$ is called a dynamic monopoly for $(G,tau)$ if the vertex set of $G$ can be partitioned into $D_0cup... cup D_t$ such that $D_0=M$ and for any $igeq 1$ and any $vin D_i$, the number of edges from $D_0cup... cup D_{i-1}$ to $v$ is at least $tau(v)$. One of the most applicable and widely studied threshold assignments in directed graphs is strict majority threshold assignment in which for any vertex $v$, $tau(v)=lceil (deg^{in}(v)+1)/2 rceil$, where $deg^{in}(v)$ stands for the in-degree of $v$. By a strict majority dynamic monopoly of a graph $G$ we mean any dynamic monopoly of $G$ with strict majority threshold assignment for the vertices of $G$. In this paper we first discuss some basic upper and lower bounds for the size of dynamic monopolies with general threshold assignments and then obtain some hardness complexity results concerning the smallest size of dynamic monopolies in directed graphs. Next we show that any directed graph on $n$ vertices and with positive minimum in-degree admits a strict majority dynamic monopoly with $n/2$ vertices. We show that this bound is achieved by a polynomial time algorithm. This upper bound improves greatly the best known result. The final note of the paper deals with the possibility of the improvement of the latter $n/2$ bound.
Graham and Pollak showed that the vertices of any graph $G$ can be addressed with $N$-tuples of three symbols, such that the distance between any two vertices may be easily determined from their addresses. An addressing is optimal if its length $N$ is minimum possible. In this paper, we determine an addressing of length $k(n-k)$ for the Johnson graphs $J(n,k)$ and we show that our addressing is optimal when $k=1$ or when $k=2, n=4,5,6$, but not when $n=6$ and $k=3$. We study the addressing problem as well as a variation of it in which the alphabet used has more than three symbols, for other graphs such as complete multipartite graphs and odd cycles. We also present computations describing the distribution of the minimum length of addressings for connected graphs with up to $10$ vertices. Motivated by these computations we settle a problem of Graham, showing that most graphs on $n$ vertices have an addressing of length at most $n-(2-o(1))log_2 n$.
Given a directed graph, an equivalence relation on the graph vertex set is said to be balanced if, for every two vertices in the same equivalence class, the number of directed edges from vertices of each equivalence class directed to each of the two vertices is the same. In this paper we describe the quotient and lift graphs of symmetric directed graphs associated with balanced equivalence relations on the associated vertex sets. In particular, we characterize the quotients and lifts which are also symmetric. We end with an application of these results to gradient and Hamiltonian coupled cell systems, in the context of the coupled cell network formalism of Golubitsky, Stewart and Torok(Patterns of synchrony in coupled cell networks with multiple arrows. {SIAM Journal of Applied Dynamical Systems, 4 (1) (2005) 78-100).
Let $G$ be a simple $n$-vertex graph and $c$ be a colouring of $E(G)$ with $n$ colours, where each colour class has size at least $2$. We prove that $(G,c)$ contains a rainbow cycle of length at most $lceil frac{n}{2} rceil$, which is best possible. Our result settles a special case of a strengthening of the Caccetta-Haggkvist conjecture, due to Aharoni. We also show that the matroid generalization of our main result also holds for cographic matroids, but fails for binary matroids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا