Inference in High-Dimensional Linear Measurement Error Models


Abstract in English

For a high-dimensional linear model with a finite number of covariates measured with error, we study statistical inference on the parameters associated with the error-prone covariates, and propose a new corrected decorrelated score test and the corresponding one-step estimator. We further establish asymptotic properties of the newly proposed test statistic and the one-step estimator. Under local alternatives, we show that the limiting distribution of our corrected decorrelated score test statistic is non-central normal. The finite-sample performance of the proposed inference procedure is examined through simulation studies. We further illustrate the proposed procedure via an empirical analysis of a real data example.

Download