Do you want to publish a course? Click here

Development of a continuously tunable titanium-sapphire laser system for the ARIEL laser ion source

79   0   0.0 ( 0 )
 Added by Ruohong Li
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A concept for continuously tunable titanium-sapphire (Ti:Sa) lasers using dispersion prisms is under investigation for the ARIEL (Advanced Rare IsotopE Laboratory) laser ion source at TRIUMF (Canadas particle accelerator center). Wavelength selection for pulsed Ti:Sa lasers used in hot cavity laser resonance ionization spectroscopy is usually done with birefringent filters (BRFs) and etalons or diffraction gratings. For resonance ionization spectroscopy a laser system allowing a continuous wavelength scan is necessary. Tunable lasers based on BRFs and etalons have high output powers however require synchronized optimization for continuous laser wavelength scans and are therefore laborious to use in scanning applications. Diffraction grating tuned lasers can provide continuous wavelength scan over 200 nm range but typically have lower output laser power due to the grating deformation under high pumping power. Aiming to overcome both shortcomings a laser design based on prisms as dispersing element has been revisited. Simulations on the beam path and optical reflectivity are done which show that these losses can be minimized to around 0.04 % for a tuning range from 700 nm up to 920 nm. Further improvement on the tuning range and reduction on the linewidth will be pursued.



rate research

Read More

Titanium doped sapphire (Ti:sapphire) is a laser gain material with broad gain bandwidth benefiting from the material stability of sapphire. These favorable characteristics of Ti:sapphire have given rise to femtosecond lasers and optical frequency combs. Shaping a single Ti:sapphire crystal into a millimeter sized high quality whispering gallery mode resonator ($Qsim10^8$) reduces the lasing threshold to 14.2 mW and increases the laser slope efficiency to 34%. The observed lasing can be both multi-mode and single-mode. This is the first demonstration of a Ti:sapphire whispering-gallery laser. Furthermore, a novel method of evaluating the gain in Ti:sapphire in the near infrared region is demonstrated by introducing a probe laser with a central wavelength of 795 nm. This method results in decreasing linewidth of the modes excited with the probe laser, consequently increasing their $Q$. These findings open avenues for the usage of whispering gallery mode resonators as cavities for the implementation of compact Ti:sapphire lasers. Moreover, Ti:sapphire can also be utilized as an amplifier inside its gain bandwidth by implementing a pump-probe configuration.
A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.
We demonstrate experimentally the full tunability of a coherent femtosecond source in the whole ultraviolet spectral region. The experiment relies on the technique of high-order harmonic generation driven by a near-infrared parametric laser source in krypton gas. By tuning the drive wavelength in the range between 1100 to 1900 nm, we generated intense harmonics from near to extreme ultraviolet. A number of photons per shot of the order of 10^7 has been measured for the first harmonic orders. Many novel scientific prospects are expected to benefit from the use of such a table-top tunable source.
261 - R. Li , J. Lassen , F. Ames 2017
Resonance ionization laser ion sources are efficient and element selective ion sources, which are particularly well suited for radioactive ion beam facilities. Using TRIUMFs off-line laser ion source test stand with a system of tunable titanium sapphire (Ti:Sa) lasers, laser resonance ionization schemes for lutetium and praseodymium have been investigated with a particular interest to autoionizing states. New ionization schemes via Rydberg states and autoionizing states were found. Their investigation and comparison of ion yields at the off-line test stand will be discussed, and the data of on-line Lu delivery will be presented.
We numerically analyze a delay differential equation model of a short-cavity semiconductor laser with an intracavity frequency swept filter and reveal a complex bifurcation structure responsible for the asymmetry of the output characteristics of this laser. We show that depending on the direction of the frequency sweep of a narrowband filter, there exist two bursting cycles determined by different parts of a continuous-wave solutions branch.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا