No Arabic abstract
Optimized certainty equivalents (OCEs) is a family of risk measures widely used by both practitioners and academics. This is mostly due to its tractability and the fact that it encompasses important examples, including entropic risk measures and average value at risk. In this work we consider stochastic optimal control problems where the objective criterion is given by an OCE risk measure, or put in other words, a risk minimization problem for controlled diffusions. A major difficulty arises since OCEs are often time inconsistent. Nevertheless, via an enlargement of state space we achieve a substitute of sorts for time consistency in fair generality. This allows us to derive a dynamic programming principle and thus recover central results of (risk-neutral) stochastic control theory. In particular, we show that the value of our risk minimization problem can be characterized via the viscosity solution of a Hamilton--Jacobi--Bellman--Issacs equation. We further establish the uniqueness of the latter under suitable technical conditions.
We consider an optimal stochastic impulse control problem over an infinite time horizon motivated by a model of irreversible investment choices with fixed adjustment costs. By employing techniques of viscosity solutions and relying on semiconvexity arguments, we prove that the value function is a classical solution to the associated quasi-variational inequality. This enables us to characterize the structure of the continuation and action regions and construct an optimal control. Finally, we focus on the linear case, discussing, by a numerical analysis, the sensitivity of the solution with respect to the relevant parameters of the problem.
We consider a problem of finding an SSD-minimal quantile function subject to the mixture of multiple first-order stochastic dominance (FSD) and second-order stochastic dominance (SSD) constraints. The solution is explicitly worked out and has a closed relation to the Skorokhod problem. We then apply this result to solve an expenditure minimization problem with the mixture of an FSD constraint and an SSD constraint in financial economics.
A new definition of continuous-time equilibrium controls is introduced. As opposed to the standard definition, which involves a derivative-type operation, the new definition parallels how a discrete-time equilibrium is defined, and allows for unambiguous economic interpretation. The terms strong equilibria and weak equilibria are coined for controls under the new and the standard definitions, respectively. When the state process is a time-homogeneous continuous-time Markov chain, a careful asymptotic analysis gives complete characterizations of weak and strong equilibria. Thanks to Kakutani-Fans fixed-point theorem, general existence of weak and strong equilibria is also established, under additional compactness assumption. Our theoretic results are applied to a two-state model under non-exponential discounting. In particular, we demonstrate explicitly that there can be incentive to deviate from a weak equilibrium, which justifies the need for strong equilibria. Our analysis also provides new results for the existence and characterization of discrete-time equilibria under infinite horizon.
This paper investigates optimal consumption in the stochastic Ramsey problem with the Cobb-Douglas production function. Contrary to prior studies, we allow for general consumption processes, without any a priori boundedness constraint. A non-standard stochastic differential equation, with neither Lipschitz continuity nor linear growth, specifies the dynamics of the controlled state process. A mixture of probabilistic arguments are used to construct the state process, and establish its non-explosiveness and strict positivity. This leads to the optimality of a feedback consumption process, defined in terms of the value function and the state process. Based on additional viscosity solutions techniques, we characterize the value function as the unique classical solution to a nonlinear elliptic equation, among an appropriate class of functions. This characterization involves a condition on the limiting behavior of the value function at the origin, which is the key to dealing with unbounded consumptions. Finally, relaxing the boundedness constraint is shown to increase, strictly, the expected utility at all wealth levels.
As most natural resources, fisheries are affected by random disturbances. The evolution of such resources may be modelled by a succession of deterministic process and random perturbations on biomass and/or growth rate at random times. We analyze the impact of the characteristics of the perturbations on the management of natural resources. We highlight the importance of using a dynamic programming approach in order to completely characterize the optimal solution, we also present the properties of the controlled model and give the behavior of the optimal harvest for specific jump kernels.