Do you want to publish a course? Click here

Towards Open-Set Semantic Segmentation of Aerial Images

162   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Classical and more recently deep computer vision methods are optimized for visible spectrum images, commonly encoded in grayscale or RGB colorspaces acquired from smartphones or cameras. A more uncommon source of images exploited in the remote sensing field are satellite and aerial images. However, the development of pattern recognition approaches for these data is relatively recent, mainly due to the limited availability of this type of images, as until recently they were used exclusively for military purposes. Access to aerial imagery, including spectral information, has been increasing mainly due to the low cost of drones, cheapening of imaging satellite launch costs, and novel public datasets. Usually remote sensing applications employ computer vision techniques strictly modeled for classification tasks in closed set scenarios. However, real-world tasks rarely fit into closed set contexts, frequently presenting previously unknown classes, characterizing them as open set scenarios. Focusing on this problem, this is the first paper to study and develop semantic segmentation techniques for open set scenarios applied to remote sensing images. The main contributions of this paper are: 1) a discussion of related works in open set semantic segmentation, showing evidence that these techniques can be adapted for open set remote sensing tasks; 2) the development and evaluation of a novel approach for open set semantic segmentation. Our method yielded competitive results when compared to closed set methods for the same dataset.



rate research

Read More

185 - Ruigang Niu , Xian Sun , Yu Tian 2020
Semantic segmentation in very high resolution (VHR) aerial images is one of the most challenging tasks in remote sensing image understanding. Most of the current approaches are based on deep convolutional neural networks (DCNNs). However, standard convolution with local receptive fields fails in modeling global dependencies. Prior researches have indicated that attention-based methods can capture long-range dependencies and further reconstruct the feature maps for better representation. Nevertheless, limited by the mere perspective of spacial and channel attention and huge computation complexity of self-attention mechanism, it is unlikely to model the effective semantic interdependencies between each pixel-pair of remote sensing data of complex spectra. In this work, we propose a novel attention-based framework named Hybrid Multiple Attention Network (HMANet) to adaptively capture global correlations from the perspective of space, channel and category in a more effective and efficient manner. Concretely, a class augmented attention (CAA) module embedded with a class channel attention (CCA) module can be used to compute category-based correlation and recalibrate the class-level information. Additionally, we introduce a simple yet effective region shuffle attention (RSA) module to reduce feature redundant and improve the efficiency of self-attention mechanism via region-wise representations. Extensive experimental results on the ISPRS Vaihingen and Potsdam benchmark demonstrate the effectiveness and efficiency of our HMANet over other state-of-the-art methods.
Semantic segmentation for aerial imagery is a challenging and important problem in remotely sensed imagery analysis. In recent years, with the success of deep learning, various convolutional neural network (CNN) based models have been developed. However, due to the varying sizes of the objects and imbalanced class labels, it can be challenging to obtain accurate pixel-wise semantic segmentation results. To address those challenges, we develop a novel semantic segmentation method and call it Contextual Hourglass Network. In our method, in order to improve the robustness of the prediction, we design a new contextual hourglass module which incorporates attention mechanism on processed low-resolution featuremaps to exploit the contextual semantics. We further exploit the stacked encoder-decoder structure by connecting multiple contextual hourglass modules from end to end. This architecture can effectively extract rich multi-scale features and add more feedback loops for better learning contextual semantics through intermediate supervision. To demonstrate the efficacy of our semantic segmentation method, we test it on Potsdam and Vaihingen datasets. Through the comparisons to other baseline methods, our method yields the best results on overall performance.
We extend panoptic segmentation to the open-world and introduce an open-set panoptic segmentation (OPS) task. This task requires performing panoptic segmentation for not only known classes but also unknown ones that have not been acknowledged during training. We investigate the practical challenges of the task and construct a benchmark on top of an existing dataset, COCO. In addition, we propose a novel exemplar-based open-set panoptic segmentation network (EOPSN) inspired by exemplar theory. Our approach identifies a new class based on exemplars, which are identified by clustering and employed as pseudo-ground-truths. The size of each class increases by mining new exemplars based on the similarities to the existing ones associated with the class. We evaluate EOPSN on the proposed benchmark and demonstrate the effectiveness of our proposals. The primary goal of our work is to draw the attention of the community to the recognition in the open-world scenarios. The implementation of our algorithm is available on the project webpage: https://cv.snu.ac.kr/research/EOPSN.
Training Convolutional Neural Networks (CNNs) for very high resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor- and time-consuming to produce. Moreover, professional photo interpreters might have to be involved for guaranteeing the correctness of annotations. To alleviate such a burden, we propose a framework for semantic segmentation of aerial images based on incomplete annotations, where annotators are asked to label a few pixels with easy-to-draw scribbles. To exploit these sparse scribbled annotations, we propose the FEature and Spatial relaTional regulArization (FESTA) method to complement the supervised task with an unsupervised learning signal that accounts for neighbourhood structures both in spatial and feature terms.
Existing Earth Vision datasets are either suitable for semantic segmentation or object detection. In this work, we introduce the first benchmark dataset for instance segmentation in aerial imagery that combines instance-level object detection and pixel-level segmentation tasks. In comparison to instance segmentation in natural scenes, aerial images present unique challenges e.g., a huge number of instances per image, large object-scale variations and abundant tiny objects. Our large-scale and densely annotated Instance Segmentation in Aerial Images Dataset (iSAID) comes with 655,451 object instances for 15 categories across 2,806 high-resolution images. Such precise per-pixel annotations for each instance ensure accurate localization that is essential for detailed scene analysis. Compared to existing small-scale aerial image based instance segmentation datasets, iSAID contains 15$times$ the number of object categories and 5$times$ the number of instances. We benchmark our dataset using two popular instance segmentation approaches for natural images, namely Mask R-CNN and PANet. In our experiments we show that direct application of off-the-shelf Mask R-CNN and PANet on aerial images provide suboptimal instance segmentation results, thus requiring specialized solutions from the research community. The dataset is publicly available at: https://captain-whu.github.io/iSAID/index.html
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا