Do you want to publish a course? Click here

Hard probes of non-equilibrium quark-gluon plasma

177   0   0.0 ( 0 )
 Added by Sigtryggur Hauksson
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Jets and photons could play an important role in finding the transport coefficients of the quark-gluon plasma. To this end we analyze their interaction with a non-equilibrium quark-gluon plasma. Using new field-theoretical tools we derive two-point correlators for the plasma which show how instabilities evolve in time. This allows us, for the first time, to derive finite rates of interaction with the medium. We furthermore show that coherent, long-wavelength instability fields in the Abelian limit do not modify the rate of photon emission or jet-medium interaction.

rate research

Read More

Penetrating probes in heavy-ion collisions, like jets and photons, are sensitive to the transport coefficients of the produced quark-gluon plasma, such as shear and bulk viscosity. Quantifying this sensitivity requires a detailed understanding of photon emission and jet-medium interaction in a non-equilibrium plasma. Up to now, such an understanding has been hindered by plasma instabilities which arise out of equilibrium and lead to spurious divergences when evaluating the rate of interaction of hard probes with the plasma. In this paper, we show that taking into account the time evolution of an unstable plasma cures these divergences. We calculate the time evolution of gluon two-point correlators in a setup with small initial momentum anisotropy and show that the gluon occupation density grows exponentially at early times. Based on this calculation, we argue for a phenomenological prescription where instability poles are subtracted. Finally, we show that in the Abelian case instability fields do not affect medium-induced photon emission to our order of approximation.
232 - Salah Hamieh 2000
Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb--Pb interactions.
We derive equations of motion for the reduced density matrix of a heavy quarkonium in contact with a quark-gluon plasma in thermal equilibrium. These equations allow in particular a proper treatment of the regime when the temperature of the plasma is comparable to the binding energy of the quarkonium. These equations are used to study how the quarkonium approaches equilibrium with the plasma, and we discuss the corresponding entropy increase, or free energy decrease, depending on the temperature regime. The effect of collisions can be accounted for by the generalization of the imaginary potential introduced in previous studies, and from which collision rates are derived. An important outcome of the present analysis is that this imaginary potential has a sizeable dependence on the energy of the relevant transitions.
We employ new field-theoretical tools to study photons and jets in a non-equilibrium quark-gluon plasma. Jet broadening and photon emission takes place through radiation which is suppressed by repeated and coherent interaction with the medium. We analyze this physics in an anisotropic plasma such as is created in the early stages of heavy-ion collisions. The anisotropy introduces an angular dependence in radiation and reduces its overall rate. This can affect phenomenological predictions of the rapidity dependence and angular flow of jets and photons.
273 - Markus H. Thoma 2005
An error in the calculation of the Coulomb coupling parameter of the quark-gluon plasma is corrected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا