Do you want to publish a course? Click here

Cosmic-ray interactions with the Sun using the FLUKA code

123   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interactions of cosmic rays with the solar atmosphere produce secondary particle which can reach the Earth. In this work we present a comprehensive calculation of the yields of secondary particles as gamma-rays, electrons, positrons, neutrons and neutrinos performed with the FLUKA code. We also estimate the intensity at the Sun and the fluxes at the Earth of these secondary particles by folding their yields with the intensities of cosmic rays impinging on the solar surface. The results are sensitive on the assumptions on the magnetic field nearby the Sun and to the cosmic-ray transport in the magnetic field in the inner solar system.



rate research

Read More

The measured fluxes of secondary particles produced by the interactions of cosmic rays with the astronomical environment represent a powerful tool to infer some properties of primary cosmic rays. In this work we investigate the production of secondary particles in inelastic hadronic interactions between several cosmic rays species of projectiles and different target nuclei of the interstellar medium. The yields of secondary particles have been calculated with the FLUKA simulation package, that provides with very good accuracy the energy distributions of secondary products in a large energy range. An application to the propagation and production of secondaries in the Galaxy is presented.
The measured fluxes of secondary particles produced by the interactions of Cosmic Rays (CRs) with the astronomical environment play a crucial role in understanding the physics of CR transport. In this work we present a comprehensive calculation of the secondary hadron, lepton, gamma-ray and neutrino yields produced by the inelastic interactions between several species of stable or long-lived cosmic rays projectiles (p, D, T, 3He, 4He, 6Li, 7Li, 9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O, 20Ne, 24Mg and 28Si) and different target gas nuclei (p, 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si and 40Ar). The yields are calculated using FLUKA, a simulation package designed to compute the energy distributions of secondary products with large accuracy in a wide energy range. The present results provide, for the first time, a complete and self-consistent set of all the relevant inclusive cross sections regarding the whole spectrum of secondary products in nuclear collisions. We cover, for the projectiles, a kinetic energy range extending from $0.1 GeV/n$ up to $100 TeV/n$ in the lab frame. In order to show the importance of our results for multi-messenger studies about the physics of CR propagation, we evaluate the propagated spectra of Galactic secondary nuclei, leptons, and gamma rays produced by the interactions of CRs with the insterstellar gas, exploiting the numerical codes DRAGON and GammaSky. We show that, adopting our cross section database, we are able to provide a good fit of a complete sample of CR observables, including: leptonic and hadronic spectra measured at Earth, the local interstellar spectra measured by Voyager, and the gamma-ray emissivities from Fermi-LAT collaboration. We also show a set of gamma-ray and neutrino full-sky maps and spectra.
FLUKA is a general purpose Monte Carlo transport and interaction code used for fundamental physics and for a wide range of applications. These include Cosmic Ray Physics (muons, neutrinos, EAS, underground physics), both for basic research and applied studies in space and atmospheric flight dosimetry and radiation damage. A review of the hadronic models available in FLUKA and relevant for the description of cosmic ray air showers is presented in this paper. Recent updates concerning these models are discussed. The FLUKA capabilities in the simulation of the formation and propagation of EM and hadronic showers in the Earths atmosphere are shown.
Cosmic-ray interactions with the solar atmosphere are expected to produce particle showers which in turn produce neutrinos from weak decays of mesons. These solar atmospheric neutrinos (SA$ u$s) have never been observed experimentally. A detection would be an important step in understanding cosmic-ray propagation in the inner solar system and the dynamics of solar magnetic fields. SA$ u$s also represent an irreducible background to solar dark matter searches and a detection would allow precise characterization of this background. Here, we present the first experimental search based on seven years of data collected from May 2010 to May 2017 in the austral winter with the IceCube Neutrino Observatory. An unbinned likelihood analysis is performed for events reconstructed within 5 degrees of the center of the Sun. No evidence for a SA$ u$ flux is observed. After inclusion of systematic uncertainties, we set a 90% upper limit of $1.02^{+0.20}_{-0.18}cdot10^{-13}$~$mathrm{GeV^{-1}cm^{-2}s^{-1}}$ at 1 TeV.
The shadowing effect of the Moon and Sun in TeV cosmic rays has been measured with high statistical significance by several experiments. Unlike particles from directions close to the Moon, however, charged particles passing by the neighborhood of the Sun are affected not only by the geomagnetic but also by the solar near- and interplanetary-magnetic field. Since the latter undergoes a well-known 11-year cycle -- during which it can become highly disordered -- the cosmic-ray shadow cast by the Sun as observed on Earth is expected to change over time. We present an update of the analysis of the cosmic-ray Moon and Sun shadows using data taken with the IceCube Neutrino Observatory. With a median energy after quality cuts of approximately $50-60,$TeV, depending on the cosmic-ray flux model used, primary cosmic rays inducing events which pass IceCubes Sun shadow filter have a comparatively high energy. While the results for the Moon shadow confirm the stability of the IceCube observatory, the results for the Sun shadow exhibit a clear variation correlating with solar activity and theoretical models of the solar magnetic field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا