Do you want to publish a course? Click here

Search for muon catalyzed $d^3He$ fusion

64   0   0.0 ( 0 )
 Added by Peter Kravtsov Dr
 Publication date 2020
  fields
and research's language is English
 Authors V.D. Fotev




Ask ChatGPT about the research

This report presents the results of an experiment aimed at observation of the muon catalyzed $^3!He;d$ fusion reaction $^3!He + mu;dto^3!He;mu;dto^4!He(3.66MeV)+p(14.64MeV)+mu$ which might occur after a negative muon stop in the $D_2+^3!He$ gas mixture. The basic element of the experimental setup is a Time Projection Chamber (TPC) which can detect the incoming muons and the products of the fusion reaction. The TPC operated with the $D_2 + ^3~He (5%)$ gas mixture at $31K$ temperature. About $10^8$ $^3!He;mu;d$ molecules were produced with only 2 registered candidates for the muon catalyzed $^3!He;d$ fusion with the expected background $N_{bg}=2.2pm 0.3$ events. This gives an upper limit for the probability of the fusion decay of the $^3!He;mu;d$ molecule $P_{F}(^3!He;mu;d)leq 1.1cdot 10^{-7}$ at 90% C.L. Also presented are the measured formation rate of the $^3!He;mu;d$ molecule $lambda_{d3He}=192(3)cdot 10^6 s^{-1}$ and the probability of the fast muon transfer from the excited to the ground state of the $mu;d$ atom $q_{1S}=0.80(3)$.



rate research

Read More

Studies of muonic atoms and muon catalyzed fusion have been conventionally done in a bulk target of gas, liquid or solid hydrogen isotopes. The use of thin film targets developed at TRIUMF have notable advantages in tackling some of the most important questions in the field, which could be further exploited at future high intensity muon sources. We review the technique of the thin film method with emphasis on recent results and a future proposal.
143 - K. P. Sinha , A. Meulenberg 2007
Lochons (local charged bosons or local electron pairs) can form on D+ to give D- (bosonic ions) in Palladium Deuteride in the solid state. Such entities will occur at special sites or in linear channel owing to strong electron-phonon interaction or due to potential inversion on metallic electrodes. These lochons can catalyze D- - D+ fusion as a consequence of internal conversion leading to the formation of He-4 plus production of energy (Q=23.8 MeV) which is carried by the alpha particle and the ejected electron-pair. The reaction rate for this fusion process is calculated.
We report on the experimental search for the bound state of an $eta$ meson and $^{3}hspace{-0.03cm}mbox{He}$ nucleus performed using the WASA-at-COSY detector setup. In order to search for the $eta$-mesic nucleus decay, the $pdrightarrow$ $^{3}hspace{-0.03cm}mbox{He} 2gamma$ and $pdrightarrow$ $^{3}hspace{-0.03cm}mbox{He} 6gamma$ channels have been analysed. These reactions manifest the direct decay of $eta$ meson bound in $^{3}hspace{-0.03cm}mbox{He}$ nucleus. This non-mesonic decay channel has been considered for the first time. When taking into account only statistical errors, the obtained excitation functions reveal a slight indication for a possible bound state signal corresponding to an $^3$He-$eta$ nucleus width $Gamma$ above 20 MeV and binding energy $B_s$ between 0 and 15 MeV. However, the determined cross sections are consistent with zero in the range of the systematic uncertainty. Therefore, as final result we estimate only the upper limit for the cross section of the $eta$-mesic $^{3}hspace{-0.03cm}mbox{He}$ nucleus formation followed by the $eta$ meson decay which varies between $2$ nb and $15$ nb depending on possible bound state parameters.
We have measured excitation function for dp -> ppp_pi- reaction near the eta production threshold. We observe an enhancement of the counting rate above the threshold which can originate from the production of the eta meson in the reaction dp -> 3He eta and its subsequent absorption on neutron in the 3He nucleus leading to creation of the p_pi- pair.
The electron-target-asymmetries A_parallel and A_perpendicular with target spin parallel and perpendicular to the momentum transfer q were measured for both the two-- and three-body breakup of 3He in the 3He(e,ep)-reaction. Polarized electrons were scattered off polarized 3He in the quasielastic regime in parallel kinematics with the scattered electron and the knocked-out proton detected using the Three-Spectrometer-Facility at MAMI. The results are compared to Faddeev calculations which take into account Final State Interactions as well as Meson Exchange Currents. The experiment confirms the prediction of a large effect of Final State Interactions in the asymmetry of the three-body breakup and of an almost negligible one for the two-body breakup.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا