Do you want to publish a course? Click here

Optimal Sampling and Scheduling for Timely Status Updates in Multi-source Networks

133   0   0.0 ( 0 )
 Added by Ahmed Bedewy
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider a joint sampling and scheduling problem for optimizing data freshness in multi-source systems. Data freshness is measured by a non-decreasing penalty function of emph{age of information}, where all sources have the same age-penalty function. Sources take turns to generate update packets, and forward them to their destinations one-by-one through a shared channel with random delay. There is a scheduler, that chooses the update order of the sources, and a sampler, that determines when a source should generate a new packet in its turn. We aim to find the optimal scheduler-sampler pairs that minimize the total-average age-penalty at delivery times (Ta-APD) and the total-average age-penalty (Ta-AP). We prove that the Maximum Age First (MAF) scheduler and the zero-wait sampler are jointly optimal for minimizing the Ta-APD. Meanwhile, the MAF scheduler and a relative value iteration with reduced complexity (RVI-RC) sampler are jointly optimal for minimizing the Ta-AP. The RVI-RC sampler is based on a relative value iteration algorithm whose complexity is reduced by exploiting a threshold property in the optimal sampler. Finally, a low-complexity threshold-type sampler is devised via an approximate analysis of Bellmans equation. This threshold-type sampler reduces to a simple water-filling sampler for a linear age-penalty function.



rate research

Read More

We consider a system in which an information source generates independent and identically distributed status update packets from an observed phenomenon that takes $n$ possible values based on a given pmf. These update packets are encoded at the transmitter node to be sent to the receiver node. Instead of encoding all $n$ possible realizations, the transmitter node only encodes the most probable $k$ realizations and disregards whenever a realization from the remaining $n-k$ values occurs. We find the average age and determine the age-optimal real codeword lengths such that the average age at the receiver node is minimized. Through numerical evaluations for arbitrary pmfs, we show that this selective encoding policy results in a lower average age than encoding every realization and find the age-optimal $k$. We also analyze a randomized selective encoding policy in which the remaining $n-k$ realizations are encoded and sent with a certain probability to further inform the receiver at the expense of longer codewords for the selected $k$ realizations.
We consider the problem of optimizing the freshness of status updates that are sent from a large number of low-power sources to a common access point. The source nodes utilize carrier sensing to reduce collisions and adopt an asynchronized sleep-wake scheduling strategy to achieve a target network lifetime (e.g., 10 years). We use age of information (AoI) to measure the freshness of status updates, and design sleep-wake parameters for minimizing the weighted-sum peak AoI of the sources, subject to per-source battery lifetime constraints. When the sensing time (i.e., the time duration of carrier sensing) is zero, this sleep-wake design problem can be solved by resorting to a two-layer nested convex optimization procedure; however, for positive sensing times, the problem is non-convex. We devise a low-complexity solution to solve this problem and prove that, for practical sensing times that are short, the solution is within a small gap from the optimum AoI performance. When the mean transmission time of status-update packets is unknown, we devise a reinforcement learning algorithm that adaptively performs the following two tasks in an ``efficient way: a) it learns the unknown parameter, b) it also generates efficient controls that make channel access decisions. We analyze its performance by quantifying its ``regret, i.e., the sub-optimality gap between its average performance and the average performance of a controller that knows the mean transmission time. Our numerical and NS-3 simulation results show that our solution can indeed elongate the batteries lifetime of information sources, while providing a competitive AoI performance.
As 5G and Internet-of-Things (IoT) are deeply integrated into vertical industries such as autonomous driving and industrial robotics, timely status update is crucial for remote monitoring and control. In this regard, Age of Information (AoI) has been proposed to measure the freshness of status updates. However, it is just a metric changing linearly with time and irrelevant of context-awareness. We propose a context-based metric, named as Urgency of Information (UoI), to measure the nonlinear time-varying importance and the non-uniform context-dependence of the status information. This paper first establishes a theoretical framework for UoI characterization and then provides UoI-optimal status updating and user scheduling schemes in both single-terminal and multi-terminal cases. Specifically, an update-index-based scheme is proposed for a single-terminal system, where the terminal always updates and transmits when its update index is larger than a threshold. For the multi-terminal case, the UoI of the proposed scheduling scheme is proven to be upper-bounded and its decentralized implementation by Carrier Sensing Multiple Access with Collision Avoidance (CSMA/CA) is also provided. In the simulations, the proposed updating and scheduling schemes notably outperform the existing ones such as round robin and AoI-optimal schemes in terms of UoI, error-bound violation and control system stability.
In this paper, we consider a transmission scheduling problem, in which several streams of status update packets with diverse priority levels are sent through a shared channel to their destinations. We introduce a notion of Lexicographic age optimality, or simply lex-age-optimality, to evaluate the performance of multi-class status update policies. In particular, a lex-age-optimal scheduling policy first minimizes the Age of Information (AoI) metrics for high-priority streams, and then, within the set of optimal policies for high-priority streams, achieves the minimum AoI metrics for low-priority streams. We propose a new scheduling policy named Preemptive Priority, Maximum Age First, Last-Generated, First-Served (PP-MAF-LGFS), and prove that the PP-MAF-LGFS scheduling policy is lex-age-optimal. This result holds (i) for minimizing any time-dependent, symmetric, and non-decreasing age penalty function; (ii) for minimizing any non-decreasing functional of the stochastic process formed by the age penalty function; and (iii) for the cases where different priority classes have distinct arrival traffic patterns, age penalty functions, and age penalty functionals. For example, the PP-MAF-LGFS scheduling policy is lex-age-optimal for minimizing the mean peak age of a high-priority stream and the time-average age of a low-priority stream. Numerical results are provided to illustrate our theoretical findings.
Multiple sources submit updates to a monitor through an M/M/1 queue. A stochastic hybrid system (SHS) approach is used to derive the average age of information (AoI) for an individual source as a function of the offered load of that source and the competing update traffic offered by other sources. This work corrects an error in a prior analysis. By numerical evaluation, this error is observed to be small and qualitatively insignificant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا