Photolysis-induced scrambling of PAHs as a mechanism for deuterium storage


Abstract in English

Aim. We investigate the role of PAHs as a sink for deuterium in the interstellar medium and study UV photolysis as a potential process in the variations of the deuterium fractionation in the ISM. Methods. The UV photo-induced fragmentation of various isotopologues of D-enriched, protonated anthracene and phenanthrene ions was recorded in a FTICR mass spectrometer. IRMPD spectroscopy using FELIX provided the IR spectra that were compared to DFT vibrational spectra; reaction barriers and rates were also calculated and related to the product abundances. Results. The mass spectra for both UV and IRMPD photolysis show the loss of H from [D-C$_{14}$H$_{10}$]$^+$, whereas [H-C$_{14}$D$_{10}$]$^+$ shows a strong preference for D loss. Calculations reveal facile 1,2-H and -D shift reactions, with barriers lower than the energy supplied by the photo-excitation process. Together with confirmation of the ground-state structures via the IR spectra, we determined that the photolytic processes in the 2 PAHs are largely governed by scrambling where the H and the D atoms relocate between different peripheral C atoms. The $sim$0.1 eV difference in zero-point energy between C-H and C-D bonds ultimately leads to faster H scrambling than D scrambling, and increased H atom loss compared to D. Conclusion. Scrambling is common in PAH cations under UV radiation. Upon photoexcitation of deuterium-enriched PAHs, the scrambling results in a higher probability for the aliphatic D atom to migrate to an aromatic site, protecting it from elimination. This could lead to increased deuteration as a PAH moves towards more exposed interstellar environments. Also, large, compact PAHs with an aliphatic C-HD group on solo sites might be responsible for the majority of aliphatic C-D stretching bands seen in astronomical spectra.

Download