No Arabic abstract
Close double neutron stars have been observed as Galactic radio pulsars, while their mergers have been detected as gamma-ray bursts and gravitational-wave sources. They are believed to have experienced at least one common-envelope episode during their evolution prior to double neutron star formation. In the last decades there have been numerous efforts to understand the details of the common-envelope phase, but its computational modelling remains challenging. We present and discuss the properties of the donor and the binary at the onset of the Roche-lobe overflow leading to these common-envelope episodes as predicted by rapid binary population synthesis models. These properties can be used as initial conditions for detailed simulations of the common-envelope phase. There are three distinctive populations, classified by the evolutionary stage of the donor at the moment of the onset of the Roche-lobe overflow: giant donors with fully-convective envelopes, cool donors with partially-convective envelopes, and hot donors with radiative envelopes. We also estimate that, for standard assumptions, tides would not circularise a large fraction of these systems by the onset of Roche-lobe overflow. This makes the study and understanding of eccentric mass-transferring systems relevant for double neutron star populations.
The coalescence of two neutron stars was recently observed in a multi-messenger detection of gravitational wave (GW) and electromagnetic (EM) radiation. Binary neutron stars that merge within a Hubble time, as well as many other compact binaries, are expected to form via common envelope evolution. Yet five decades of research on common envelope evolution have not yet resulted in a satisfactory understanding of the multi-spatial multi-timescale evolution for the systems that lead to compact binaries. In this paper, we report on the first successful simulations of common envelope ejection leading to binary neutron star formation in 3D hydrodynamics. We simulate the dynamical inspiral phase of the interaction between a 12$M_odot$ red supergiant and a 1.4$M_odot$ neutron star for different initial separations and initial conditions. For all of our simulations, we find complete envelope ejection and a final orbital separation of $approx 1.1$-$2.8 R_odot$, leading to a binary neutron star that will merge within 0.01-1 Gyr. We find an $alpha_{rm CE}$-equivalent efficiency of $approx 0.1$-$0.4$ for the models we study, but this may be specific for these extended progenitors. We fully resolve the core of the star to $lesssim 0.005 R_odot$ and our 3D hydrodynamics simulations are informed by an adjusted 1D analytic energy formalism and a 2D kinematics study in order to overcome the prohibitive computational cost of simulating these systems. The framework we develop in this paper can be used to simulate a wide variety of interactions between stars, from stellar mergers to common envelope episodes leading to GW sources.
The discovery via gravitational waves of binary black hole systems with total masses greater than $60M_odot$ has raised interesting questions for stellar evolution theory. Among the most promising formation channels for these systems is one involving a common envelope binary containing a low metallicity, core helium burning star with mass $sim 80-90M_odot$ and a black hole with mass $sim 30-40M_odot$. For this channel to be viable, the common envelope binary must eject more than half the giant stars mass and reduce its orbital separation by as much as a factor of 80. We discuss issues faced in numerically simulating the common envelope evolution of such systems and present a 3D AMR simulation of the dynamical inspiral of a low-metallicity red supergiant with a massive black hole companion.
The double pulsar system PSR J0737-3039A/B is a double neutron star binary, with a 2.4-hour orbital period, which has allowed measurement of relativistic orbital perturbations to high precision. The low mass of the second-formed neutron star, as well as the low system eccentricity and proper motion, point to a different evolutionary scenario compared to most other known double neutron star systems. We describe analysis of the pulse profile shape over 6 years of observations, and present the resulting constraints on the system geometry. We find the recycled pulsar in this system, PSR J0737-3039A, to be a near-orthogonal rotator, with an average separation between its spin and magnetic axes of 90 +/- 11 +/- 5 deg. Furthermore, we find a mean 95% upper limit on the misalignment between its spin and orbital angular momentum axes of 3.2 deg, assuming that the observed emission comes from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron-capture onto an O-Ne-Mg core.
Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square-Kilometre-Array searching for radio pulsars and high-frequency gravitational wave detectors (LIGO/VIRGO), respectively. Here we discuss all key properties of DNS systems, as well as selection effects, and combine the latest observational data with new theoretical progress on various physical processes with the aim of advancing our knowledge on their formation. We examine key interactions of their progenitor systems and evaluate their accretion history during the high-mass X-ray binary stage, the common envelope phase and the subsequent Case BB mass transfer, and argue that the first-formed NSs have accreted at most $sim 0.02;M_{odot}$. We investigate DNS masses, spins and velocities, and in particular correlations between spin period, orbital period and eccentricity. Numerous Monte Carlo simulations of the second supernova (SN) events are performed to extrapolate pre-SN stellar properties and probe the explosions. All known close-orbit DNS systems are consistent with ultra-stripped exploding stars. Although their resulting NS kicks are often small, we demonstrate a large spread in kick magnitudes which may, in general, depend on the past interaction history of the exploding star and thus correlate with the NS mass. We analyze and discuss NS kick directions based on our SN simulations. Finally, we discuss the terminal evolution of close-orbit DNS systems until they merge and possibly produce a short $gamma$-ray burst.
We present a characterization of the dust in the Wolf-Rayet (WR) nebula RCW 58 around the WN8h star WR 40 using archival infrared (IR) observations from WISE and Herschel and radio observations from ATCA. We selected two clumps, free from contamination from material along the line of sight and located towards southern regions in RCW 58, as representative of the general properties of this WR nebula. Their optical, IR and radio properties are then modelled using the photoionization code Cloudy, which calculates a self-consistent spatial distribution of dust and gas properties. Two populations of dust grains are required to model the IR SED: a population of small grains with sizes 0.002-0.01 $mu$m, which is found throughout the clumps, and a population of large grains, with sizes up to 0.9 $mu$m, located further from the star. Moreover, the clumps have very high dust-to-gas ratios, which present a challenge for their origin. Our model supports the hypothesis that RCW 58 is distributed in a ring-like structure rather than a shell, and we estimate a mass of $sim$2.5 M$_odot$. This suggests that the mass of the progenitor of WR 40 was about $approx40^{+2}_{-3}$ M$_odot$. The ring morphology, low nebular mass, large dust grain size and high dust-to-gas ratio lead us to propose that RCW 58 has formed through a common envelope channel, similar to what has been proposed for M 1-67.