Do you want to publish a course? Click here

Synthetic Semimetals with van der Waals Interfaces

260   0   0.0 ( 0 )
 Added by Nicolas Ubrig
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The assembly of suitably designed van der Waals (vdW) heterostructures represents a new approach to produce artificial systems with engineered electronic properties. Here, we apply this strategy to realize synthetic semimetals based on vdW interfaces formed by two different semiconductors. Guided by existing ab-initio calculations, we select WSe$_2$ and SnSe$_2$ mono and multilayers to assemble vdW interfaces, and demonstrate the occurrence of semimetallicity by means of different transport experiments. Semimetallicity manifests itself in a finite minimum conductance upon sweeping the gate over a large range in ionic liquid gated devices, which also offer spectroscopic capabilities enabling the quantitative determination of the band overlap. The semimetallic state is additionally revealed in Hall effect measurements by the coexistence of electrons and holes, observed by either looking at the evolution of the Hall slope with sweeping the gate voltage or with lowering temperature. Finally, semimetallicity results in the low-temperature metallic conductivity of interfaces of two materials that are themselves insulating. These results demonstrate the possibility to implement a state of matter that had not yet been realized in vdW interfaces, and represent a first step towards using these interfaces to engineer topological or excitonic insulating states.



rate research

Read More

Recent technical progress demonstrates the possibility of stacking together virtually any combination of atomically thin crystals of van der Waals bonded compounds to form new types of heterostructures and interfaces. As a result, there is the need to understand at a quantitative level how the interfacial properties are determined by the properties of the constituent 2D materials. We address this problem by studying the transport and optoelectronic response of two different interfaces based on transition-metal dichalcogenide monolayers, namely WSe2-MoSe2 and WSe2-MoS2. By exploiting the spectroscopic capabilities of ionic liquid gated transistors, we show how the conduction and valence bands of the individual monolayers determine the bands of the interface, and we establish quantitatively (directly from the measurements) the energetic alignment of the bands in the different materials as well as the magnitude of the interfacial band gap. Photoluminescence and photocurrent measurements allow us to conclude that the band gap of the WSe2-MoSe2 interface is direct in k space, whereas the gap of WSe2/MoS2 is indirect. For WSe2/MoSe2, we detect the light emitted from the decay of interlayer excitons and determine experimentally their binding energy using the values of the interfacial band gap extracted from transport measurements. The technique that we employed to reach this conclusion demonstrates a rather-general strategy for characterizing quantitatively the interfacial properties in terms of the properties of the constituent atomic layers. The results presented here further illustrate how van der Waals interfaces of two distinct 2D semiconducting materials are composite systems that truly behave as artificial semiconductors, the properties of which can be deterministically defined by the selection of the appropriate constituent semiconducting monolayers.
Van der Waals (vdW) materials offer new ways to assemble artificial electronic media with properties controlled at the design stage, by combining atomically defined layers into interfaces and heterostructures. Their potential for optoelectronics stems from the possibility to tailor the spectral response over a broad range by exploiting interlayer transitions between different compounds with an appropriate band-edge alignment. For the interlayer transitions to be radiative, however, a serious challenge comes from details of the materials --such as lattice mismatch or even a small misalignment of the constituent layers-- that can drastically suppress the electron-photon coupling. The problem was evidenced in recent studies of heterostructures of monolayer transition metal dichalcogenides, whose band edges are located at the K-point of reciprocal space. Here we demonstrate experimentally that the solution to the interlayer coupling problem is to engineer type-II interfaces by assembling atomically thin crystals that have the bottom of the conduction band and the top of the valence band at the $Gamma$-point, thus avoiding any momentum mismatch. We find that this type of vdW interfaces exhibits radiative optical transition irrespective of lattice constant, rotational/translational alignment of the two layers, or whether the constituent materials are direct or indirect gap semiconductors. The result, which is robust and of general validity, drastically broadens the scope of future optoelectronics device applications based on 2D materials.
Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS2 or WS2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe2 and WSe2, our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN: interfaces which are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two dimensional (2D) crystal NbSe2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glove-box transfer significantly improves the quality of interfaces for WSe2 compared to processing in air.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
Van der Waals (vdW) semiconductors are attractive for highly scaled devices and heterogeneous integration since they can be isolated into self-passivated, two-dimensional (2D) layers that enable superior electrostatic control. These attributes have led to numerous demonstrations of field-effect devices ranging from transistors to triodes. By exploiting the controlled, substitutional doping schemes in covalently-bonded, three-dimensional (3D) semiconductors and the passivated surfaces of 2D semiconductors, one can construct devices that can exceed performance metrics of all-2D vdW heterojunctions. Here, we demonstrate, 2D/3D semiconductor heterojunctions using MoS2 as the prototypical 2D semiconductor laid upon Si and GaN as the 3D semiconductor layers. By tuning the Fermi levels in MoS2, we demonstrate devices that concurrently exhibit over seven orders of magnitude modulation in rectification ratios and conductance. Our results further suggest that the interface quality does not necessarily affect Fermi-level tuning at the junction opening up possibilities for novel 2D/3D heterojunction device architectures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا