Do you want to publish a course? Click here

Can an Algorithm be My Healthcare Proxy?

103   0   0.0 ( 0 )
 Added by Duncan McElfresh
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Planning for death is not a process in which everyone participates. Yet a lack of planning can have vast impacts on a patients well-being, the well-being of her family, and the medical community as a whole. Advance Care Planning (ACP) has been a field in the United States for a half-century. Many modern techniques prompting patients to think about end of life (EOL) involve short surveys or questionnaires. Different surveys are targeted to different populations (based off of likely disease progression or cultural factors, for instance), are designed with different intentions, and are administered in different ways. There has been recent work using technology to increase the number of people using advance care planning tools. However, modern techniques from machine learning and artificial intelligence could be employed to make additional changes to the current ACP process. In this paper we will discuss some possible ways in which these tools could be applied. We will discuss possible implications of these applications through vignettes of patient scenarios. We hope that this paper will encourage thought about appropriate applications of artificial intelligence in ACP as well as implementation of AI in order to ensure intentions are honored.



rate research

Read More

Explainable artificially intelligent (XAI) systems form part of sociotechnical systems, e.g., human+AI teams tasked with making decisions. Yet, current XAI systems are rarely evaluated by measuring the performance of human+AI teams on actual decision-making tasks. We conducted two online experiments and one in-person think-aloud study to evaluate two currently common techniques for evaluating XAI systems: (1) using proxy, artificial tasks such as how well humans predict the AIs decision from the given explanations, and (2) using subjective measures of trust and preference as predictors of actual performance. The results of our experiments demonstrate that evaluations with proxy tasks did not predict the results of the evaluations with the actual decision-making tasks. Further, the subjective measures on evaluations with actual decision-making tasks did not predict the objective performance on those same tasks. Our results suggest that by employing misleading evaluation methods, our field may be inadvertently slowing its progress toward developing human+AI teams that can reliably perform better than humans or AIs alone.
This paper concerns the ethics and morality of algorithms and computational systems, and has been circulating internally at Facebook for the past couple years. The paper reviews many Nobel laureates work, as well as the work of other prominent scientists such as Richard Dawkins, Andrei Kolmogorov, Vilfredo Pareto, and John von Neumann. The paper draws conclusions based on such works, as summarized in the title. The paper argues that the standard approach to modern machine learning and artificial intelligence is bound to be biased and unfair, and that longstanding traditions in the professions of law, justice, politics, and medicine should help.
Detection of entangled states is essential in both fundamental and applied quantum physics. However, this task proves to be challenging especially for general quantum states. One can execute full state tomography but this method is time demanding especially in complex systems. Other approaches use entanglement witnesses, these methods tend to be less demanding but lack reliability. Here, we demonstrate that ANN -- artificial neural networks provide a balance between both approaches. In this paper, we make a comparison of ANN performance against witness-based methods for random general 2-qubit quantum states without any prior information on the states. Furthermore, we apply our approach to real experimental data set.
The future of healthcare systems is being shaped by incorporating emerged technological innovations to drive new models for patient care. By acquiring, integrating, analyzing, and exchanging medical data at different system levels, new practices can be introduced, offering a radical improvement to healthcare services. This paper presents a novel smart and secure Healthcare system (ssHealth), which, leveraging advances in edge computing and blockchain technologies, permits epidemics discovering, remote monitoring, and fast emergency response. The proposed system also allows for secure medical data exchange among local healthcare entities, thus realizing the integration of multiple national and international entities and enabling the correlation of critical medical events for, e.g., emerging epidemics management and control. In particular, we develop a blockchain-based architecture and enable a flexible configuration thereof, which optimize medical data sharing between different health entities and fulfil the diverse levels of Quality of Service (QoS) that ssHealth may require. Finally, we highlight the benefits of the proposed ssHealth system and possible directions for future research.
In this paper, we build the case that 5G and concomitant emerging technologies (such as IoT, big data, artificial intelligence, and machine learning) will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of AI and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system, and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا