No Arabic abstract
There is sparse direct experimental evidence that atomic nuclei can exhibit stable pear shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole ($E3$) matrix elements have been determined for transitions in $^{222,228}$Ra nuclei using the method of sub-barrier, multi-step Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of $E$3 matrix elements for different nuclear transitions is explained by describing $^{222}$Ra as pear-shaped with stable octupole deformation, while $^{228}$Ra behaves like an octupole vibrator.
Energy levels, wavelengths, lifetimes and hyperfine structure constants for the isotopes of the first and second spectra of radium, Ra I and Ra II have been compiled. Wavelengths and wave numbers are tabulated for 226Ra and for other Ra isotopes. Isotope shifts and hyperfine structure constants of even and odd-A isotopes of neutral radium atom and singly ionized radium are included. Experimental lifetimes of the states for both neutral and ionic Ra are also added, where available. The information is beneficial for present and future experiments aimed at different physics motivations using neutral Ra and singly ionized Ra.
With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross sections and a lack of complimentary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, {rmfamily textsc{gosia}}.
The radioactive radium-225 ($^{225}$Ra) atom is a favorable case to search for a permanent electric dipole moment (EDM). Due to its strong nuclear octupole deformation and large atomic mass, $^{225}$Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of $^{225}$Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic EDM, reaching an upper limit of $|$$d$($^{225}$Ra)$|$ $<$ $5.0!times!10^{-22}$ $e cdot$cm (95$%$ confidence).
Background: Octupole-deformed nuclei, such as that of $^{225}$Ra, are expected to amplify observable atomic electric dipole moments (EDMs) that arise from time-reversal and parity-violating interactions in the nuclear medium. In 2015, we reported the first proof-of-principle measurement of the $^{225}$Ra atomic EDM. Purpose: This work reports on the first of several experimental upgrades to improve the statistical sensitivity of our $^{225}$Ra EDM measurements by orders of magnitude and evaluates systematic effects that contribute to current and future levels of experimental sensitivity. Method: Laser-cooled and trapped $^{225}$Ra atoms are held between two high voltage electrodes in an ultra high vacuum chamber at the center of a magnetically shielded environment. We observe Larmor precession in a uniform magnetic field using nuclear-spin-dependent laser light scattering and look for a phase shift proportional to the applied electric field, which indicates the existence of an EDM. The main improvement to our measurement technique is an order of magnitude increase in spin precession time, which is enabled by an improved vacuum system and a reduction in trap-induced heating. Results: We have measured the $^{225}$Ra atomic EDM to be less than $1.4times10^{-23}$ $e$ cm (95% confidence upper limit), which is a factor of 36 improvement over our previous result. Conclusions: Our evaluation of systematic effects shows that this measurement is completely limited by statistical uncertainty. Combining this measurement technique with planned experimental upgrades we project a statistical sensitivity at the $1times10^{-28}$ $e$ cm level and a total systematic uncertainty at the $4times10^{-29}$ $e$ cm level.
Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, $^{226}$RaF and radium cation, $^{226}$Ra$^+$, are reported. The considered transition $X~^2Sigma_{1/2} to A~^2Pi_{1/2}$ in RaF is one of the main features of this molecule and can be used to laser cool RaF for subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions we go beyond the Dirac-Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. Effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is implemented now for molecules. It is shown that the inclusion of QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac-Coulomb-Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the chemical accuracy, 1 kcal/mol=43 meV, that is usually considered as a guiding thread in theoretical molecular physics.