We report the development of redox-active conjugated polymers with potential application to electrochemical energy storage. Side chain engineering enables processing of the polymer electrodes from solution, stability in aqueous electrolytes and efficient transport of ionic and electronic charge carriers. We synthesized a 3,3 dialkoxybithiophene homo polymer (p type polymer) with glycol side chains and prepared naphthalene 1,4,5,8-tetracarboxylic-diimide-dialkoxybithiophene (NDI gT2) copolymers (n type polymer) with either a glycol or zwitterionic side chain on the NDI unit. For the latter, we developed a post-functionalization synthesis to attach the polar zwitterion side chains to the polymer backbone to avoid challenges of purifying polar intermediates. We demonstrate fast and reversible charging of solution processed electrodes for both the p- and n type polymers in aqueous electrolytes, without using additives or porous scaffolds and for films up to micrometers thick. We apply spectroelectrochemistry as an in operando technique to probe the state of charge of the electrodes. This reveals that thin films of the p-type polymer and zwitterion n-type polymer can be charged reversibly with up to two electronic charges per repeat unit (bipolaron formation). We combine thin films of these polymers in a two-electrode cell and demonstrate output voltages of up to 1.4 V with high redox stability. Our findings demonstrate the potential of functionalizing conjugated polymers with appropriate polar side chains to improve specific capacity, reversibility and rate capabilities of polymer electrodes in aqueous electrolytes.