No Arabic abstract
Nitrogen-Vacancy centers in diamond possess an electronic spin resonance that strongly depends on temperature, which makes them efficient temperature sensor with a sensitivity down to a few mK/$sqrt{rm Hz}$. However, the high thermal conductivity of the host diamond may strongly damp any temperature variations, leading to invasive measurements when probing local temperature distributions. In view of determining possible and optimal configurations for diamond-based wide-field thermal imaging, we here investigate, both experimentally and numerically, the effect of the presence of diamond on microscale temperature distributions. Three geometrical configurations are studied: a bulk diamond substrate, a thin diamond layer bonded on quartz and diamond nanoparticles dispersed on quartz. We show that the use of bulk diamond substrates for thermal imaging is highly invasive, in the sense that it prevents any substantial temperature increase. Conversely, thin diamond layers partly solve this issue and could provide a possible alternative for microscale thermal imaging. Dispersions of diamond nanoparticles throughout the sample appear as the most relevant approach as they do not affect the temperature distribution, although NV centers in nanodiamonds yield lower temperature sensitivities compared to bulk diamond.
Wide-field magnetometry can be realized by imaging the optically-detected magnetic resonance of diamond nitrogen vacancy (NV) center ensembles. However, NV ensemble inhomogeneities significantly limit the magnetic-field sensitivity of these measurements. We demonstrate a double-double quantum (DDQ) driving technique to facilitate wide-field magnetic imaging of dynamic magnetic fields at a micron scale. DDQ imaging employs four-tone radio frequency pulses to suppress inhomogeneity-induced variations of the NV resonant response. As a proof-of-principle, we use the DDQ technique to image the dc magnetic field produced by individual magnetic-nanoparticles tethered by single DNA molecules to a diamond sensor surface. This demonstrates the efficacy of the diamond NV ensemble system in high-frame-rate magnetic microscopy, as well as single-molecule biophysics applications.
A realization of the force-induced remnant magnetization spectroscopy (FIRMS) technique of specific biomolecular binding is presented where detection is accomplished with wide-field optical and diamond-based magnetometry using an ensemble of nitrogen-vacancy (NV) color centers. The technique may be adapted for massively parallel screening of arrays of nanoscale samples.
As wide bandgap electronic devices have continued to advance in both size reduction and power handling capabilities, heat dissipation has become a significant concern. To mitigate this, chemical vapor deposited (CVD) diamond has been demonstrated as an effective solution for thermal management of these devices by directly growing onto the transistor substrate. A key aspect of power and radio frequency (RF) electronic devices involves transient switching behavior, which highlights the importance of understanding the temperature dependence of the heat capacity and thermal conductivity when modeling and predicting device electrothermal response. Due to the complicated microstructure near the interface between CVD diamond and electronics, it is difficult to measure both properties simultaneously. In this work, we use time domain thermoreflectance (TDTR) to simultaneously measure the in plane thermal conductivity and heat capacity of a 1 um thick CVD diamond film, and also use the pump as an effective heater to perform temperature dependent measurements. The results show that the in plane thermal conductivity varied slightly with an average of 103 W per meter per K over a temperature range of 302 to 327 K, while the specific heat capacity has a strong temperature dependence over the same range and matches with heat capacity data of natural diamond in literature.
The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport, solid-state material dynamics, and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally-coated nanodiamonds to realize simultaneous wide-field MT imaging. Our quantum conformally-attached thermo-magnetic (Q-CAT) imaging enables (i) wide-field, high-frame-rate imaging (100 - 1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron-mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields.
We report on wide-field optically detected magnetic resonance imaging of nitrogen-vacancy centers (NVs) in type IIa polycrystalline diamond. These studies reveal a heterogeneous crystalline environment that produces a varied density of NV centers, including preferential orientation within some individual crystal grains, but preserves long spin coherence times. Using the native NVs as nanoscale sensors, we introduce a 3-dimensional strain imaging technique with high sensitivity ( $< 10^{-5}$ Hz$^{-1/2}$) and diffraction-limited resolution across a wide field of view.