Do you want to publish a course? Click here

TiFL: A Tier-based Federated Learning System

80   0   0.0 ( 0 )
 Added by Ahsan Ali Mr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Federated Learning (FL) enables learning a shared model across many clients without violating the privacy requirements. One of the key attributes in FL is the heterogeneity that exists in both resource and data due to the differences in computation and communication capacity, as well as the quantity and content of data among different clients. We conduct a case study to show that heterogeneity in resource and data has a significant impact on training time and model accuracy in conventional FL systems. To this end, we propose TiFL, a Tier-based Federated Learning System, which divides clients into tiers based on their training performance and selects clients from the same tier in each training round to mitigate the straggler problem caused by heterogeneity in resource and data quantity. To further tame the heterogeneity caused by non-IID (Independent and Identical Distribution) data and resources, TiFL employs an adaptive tier selection approach to update the tiering on-the-fly based on the observed training performance and accuracy overtime. We prototype TiFL in a FL testbed following Googles FL architecture and evaluate it using popular benchmarks and the state-of-the-art FL benchmark LEAF. Experimental evaluation shows that TiFL outperforms the conventional FL in various heterogeneous conditions. With the proposed adaptive tier selection policy, we demonstrate that TiFL achieves much faster training performance while keeping the same (and in some cases - better) test accuracy across the board.



rate research

Read More

We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silos vertical data shard partitioned horizontally across its clients. We propose Tiered Decentralized Coordinate Descent (TDCD), a communication-efficient decentralized training algorithm for such two-tiered networks. To reduce communication overhead, the clients in each silo perform multiple local gradient steps before sharing updates with their hub. Each hub adjusts its coordinates by averaging its workers updates, and then hubs exchange intermediate updates with one another. We present a theoretical analysis of our algorithm and show the dependence of the convergence rate on the number of vertical partitions, the number of local updates, and the number of clients in each hub. We further validate our approach empirically via simulation-based experiments using a variety of datasets and objectives.
Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. This paper presents a new class of convergence analysis for FL, Federated Learning Neural Tangent Kernel (FL-NTK), which corresponds to overparamterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization.
340 - Sin Kit Lo , Yue Liu , Qinghua Lu 2021
Federated learning is an emerging privacy-preserving AI technique where clients (i.e., organisations or devices) train models locally and formulate a global model based on the local model updates without transferring local data externally. However, federated learning systems struggle to achieve trustworthiness and embody responsible AI principles. In particular, federated learning systems face accountability and fairness challenges due to multi-stakeholder involvement and heterogeneity in client data distribution. To enhance the accountability and fairness of federated learning systems, we present a blockchain-based trustworthy federated learning architecture. We first design a smart contract-based data-model provenance registry to enable accountability. Additionally, we propose a weighted fair data sampler algorithm to enhance fairness in training data. We evaluate the proposed approach using a COVID-19 X-ray detection use case. The evaluation results show that the approach is feasible to enable accountability and improve fairness. The proposed algorithm can achieve better performance than the default federated learning setting in terms of the models generalisation and accuracy.
200 - Jin Wang , Jia Hu , Jed Mills 2021
Federated learning (FL) is a privacy-preserving machine learning paradigm that enables collaborative training among geographically distributed and heterogeneous users without gathering their data. Extending FL beyond the conventional supervised learning paradigm, federated Reinforcement Learning (RL) was proposed to handle sequential decision-making problems for various privacy-sensitive applications such as autonomous driving. However, the existing federated RL algorithms directly combine model-free RL with FL, and thus generally have high sample complexity and lack theoretical guarantees. To address the above challenges, we propose a new federated RL algorithm that incorporates model-based RL and ensemble knowledge distillation into FL. Specifically, we utilise FL and knowledge distillation to create an ensemble of dynamics models from clients, and then train the policy by solely using the ensemble model without interacting with the real environment. Furthermore, we theoretically prove that the monotonic improvement of the proposed algorithm is guaranteed. Extensive experimental results demonstrate that our algorithm obtains significantly higher sample efficiency compared to federated model-free RL algorithms in the challenging continuous control benchmark environments. The results also show the impact of non-IID client data and local update steps on the performance of federated RL, validating the insights obtained from our theoretical analysis.
Federated Learning is a novel paradigm that involves learning from data samples distributed across a large network of clients while the data remains local. It is, however, known that federated learning is prone to multiple system challenges including system heterogeneity where clients have different computation and communication capabilities. Such heterogeneity in clients computation speeds has a negative effect on the scalability of federated learning algorithms and causes significant slow-down in their runtime due to the existence of stragglers. In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients data to adaptively select the clients in order to speed up the learning procedure. The key idea of our algorithm is to start the training procedure with faster nodes and gradually involve the slower nodes in the model training once the statistical accuracy of the data corresponding to the current participating nodes is reached. The proposed approach reduces the overall runtime required to achieve the statistical accuracy of data of all nodes, as the solution for each stage is close to the solution of the subsequent stage with more samples and can be used as a warm-start. Our theoretical results characterize the speedup gain in comparison to standard federated benchmarks for strongly convex objectives, and our numerical experiments also demonstrate significant speedups in wall-clock time of our straggler-resilient method compared to federated learning benchmarks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا