Do you want to publish a course? Click here

Highly-Chirped Bragg Gratings for Integrated Silica Spectrometers

75   0   0.0 ( 0 )
 Added by James William Field
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A blazed chirped Bragg grating in a planar silica waveguide device was used to create an integrated diffractive element for a spectrometer. The grating diffracts light from a waveguide and creates a wavelength dependent focus in a manner similar to a bulk diffraction grating spectrometer. An external imaging system is used to analyse the light, later device iterations plan to integrate detectors to make a fully integrated spectrometer. Devices were fabricated with grating period chirp rates in excess of 100nm/mm, achieving a focal length of 5.5mm. Correction of coma aberrations resulted in a device with a footprint of 20mm x 10mm, a peak FWHM resolution of 1.8nm, a typical FWHM resolution of 2.6nm and operating with a 160nm bandwidth centered at 1550nm.



rate research

Read More

We report on a new high resolution apparatus for measuring magnetostriction suitable for use at cryogenic temperatures in pulsed high magnetic fields which we have developed at the Hochfeld-Magnetlabor Dresden. Optical fibre strain gauges based on Fibre Bragg Gratings are used to measure the strain in small (~1mm) samples. We describe the implementation of a fast measurement system capable of resolving strains in the order of $10^{-7}$ with a full bandwidth of 47kHz, and demonstrate its use on single crystal samples of GdSb and GdSi.
The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermo-refractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed. Keywords: spatial filter, pinhole spatial filter, RUGATE filter, angular selectivity of volume phase grating, Pi-phase-shifted Bragg grating, high-energy pulsed laser, multi-pass laser amplifier
We find exact solutions describing bidirectional pulses propagating in fiber Bragg gratings. They are derived by solving the coupled-mode theory equations and are expressed in terms of products of modified Bessel functions with algebraic functions. Depending on the values of the two free parameters the general bidirectional X-wave solution can also take the form of a unidirectional pulse. We analyze the symmetries and the asymptotic properties of the solutions and also discuss about additional waveforms that are obtained by interference of more than one solutions. Depending on their parameters such pulses can create a sharp focus with high contrast.
Two-dimensional transition-metal dichalcogenides (TMDC) are of great interest for on-chip nanophotonics due to their unique optoelectronic properties. Here, we propose and realize coupling of tungsten diselenide (WSe2) monolayers to circular Bragg grating structures to achieve enhanced emission. The interaction between WSe2 and the resonant mode of the structure results in Purcell-enhanced emission, while the symmetric geometrical structure improves the directionality of the out-coupling stream of emitted photons. Furthermore, this hybrid structure produces a record high contrast of the spin valley readout (> 40%) revealed by the polarization resolved photoluminescence (PL) measurements. Our results are promising for on-chip integration of TMDC monolayers with optical resonators for nanophotonic circuits.
Sensitive transduction of the motion of a microscale cantilever is central to many applications in mass, force, magnetic resonance, and displacement sensing. Reducing cantilever size to nanoscale dimensions can improve the bandwidth and sensitivity of techniques like atomic force microscopy, but current optical transduction methods suffer when the cantilever is small compared to the achievable spot size. Here, we demonstrate sensitive optical transduction in a monolithic cavity-optomechanical system in which a sub-picogram silicon cantilever with a sharp probe tip is separated from a microdisk optical resonator by a nanoscale gap. High quality factor (Q ~ 10^5) microdisk optical modes transduce the cantilevers MHz frequency thermally-driven vibrations with a displacement sensitivity of ~ 4.4x10^-16 msqrt[2]{Hz} and bandwidth > 1 GHz, and a dynamic range > 10^6 is estimated for a 1 s measurement. Optically-induced stiffening due to the strong optomechanical interaction is observed, and engineering of probe dynamics through cantilever design and electrostatic actuation is illustrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا