We present multi-epoch deep ($sim$20 mag) $I_{c}$~band photometric monitoring of the Sh 2-170 star-forming region to understand the variability properties of pre-main-sequence (PMS) stars. We report identification of 47 periodic and 24 non-periodic variable stars with periods and amplitudes ranging from $sim$4 hrs to 18 days and from $sim$0.1 to 2.0 mag, respectively. We have further classified 49 variables as PMS stars (17 Class,{sc ii} and 32 Class,{sc iii}) and 17 as main-sequence (MS)/field star variables. A larger fraction of MS/field variables (88%) show periodic variability as compared to the PMS variables (59%). The ages and masses of the PMS variable stars are found to be comparable with those of T-Tauri stars. Their variability amplitudes show an increasing trend with the near-IR/mid-IR excess. The period distribution of the PMS variables shows two peaks, one near $sim$1.5 days and the other near $sim$4.5 days. It is found that the younger stars with thicker discs and envelopes seem to rotate slower than their older counterparts. These properties of the PMS variables support the disc-locking mechanism. Both the period and amplitude of PMS stars show decrease with increasing mass probably due to the effective dispersal of circumstellar discs in massive stars. Our results favour the notion that cool spots on weak line T-Tauri stars are responsible for most of their variations, while hot spots on classical T-Tauri stars resulting from variable mass accretion from an inner disc contribute to their larger amplitudes and irregular behaviours.