Do you want to publish a course? Click here

Efficient method for estimation of fission fragment yields of r-process nuclei

135   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

$textbf{Background}$ More than half of all the elements heavier than iron are made by the rapid neutron capture process (or r process). For very neutron-rich astrophysical conditions, such at those found in the tidal ejecta of neutron stars, nuclear fission determines the r-process endpoint, and the fission fragment yields shape the final abundances of $110le A le 170$ nuclei. The knowledge of fission fragment yields of hundreds of nuclei inhabiting very neutron-rich regions of the nuclear landscape is thus crucial for the modeling of heavy-element nucleosynthesis. $textbf{Purpose}$ In this study, we propose a model for the fast calculation of fission fragment yields based on the concept of shell-stabilized prefragments defined with help of the nucleonic localization functions. $textbf{Methods}$ To generate realistic potential energy surfaces and nucleonic localizations, we apply Skyrme Density Functional Theory. The distribution of the neck nucleons among the two prefragments is obtained by means of a statistical model. $textbf{Results}$ We benchmark the method by studying the fission yields of $^{178}$Pt, $^{240}$Pu, $^{254}$Cf, and $^{254,256,258}$Fm and show that it satisfactorily explains the experimental data. We then make predictions for $^{254}$Pu and $^{290}$Fm as two representative cases of fissioning nuclei that are expected to significantly contribute during the r-process nucleosynthesis occurring in neutron star mergers. $textbf{Conclusions}$ The proposed framework provides an efficient alternative to microscopic approaches based on the evolution of the system in a space of collective coordinates all the way to scission. It can be used to carry out global calculations of fission fragment distributions across the r-process region.



rate research

Read More

In the present paper, we explore the idea of isospin conservation in new situations and contexts based on the directions provided by our earlier works. We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in fast neutron-induced fission, 238U (n, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. Our results successfully reproduced the gross features of partition wise fission fragments distribution of 238U (n, fission). This confirms that in all kinds of fission, isospin remains pure in neutron-rich systems even at high excitations. Thus, isospin can be proven as an important quantum number for the prediction of fission fragment distribution.
Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in the macroscopic-microscopic model. The Lublin-Strasbourg Drop (LSD) is used to obtain the macroscopic part of the energy, whereas the shell and pairing energy corrections are evaluated using the Yukawa-folded potential. A standard flooding technique has been used to determine the barrier heights. It was shown the Fourier shape parametrization containing only three deformation parameters reproduces well the nuclear shapes of nuclei on their way to fission. In addition, the non-axial degree of freedom is taken into account to describe better the form of nuclei around the ground state and in the saddles region. Apart from the symmetric fission valley, a new very asymmetric fission mode is predicted in most superheavy nuclei. The fission fragment mass distributions of considered nuclei are obtained by solving the 3D Langevin equations.
Fission-fragment mass and total-kinetic-energy (TKE) distributions following fission of even-even nuclides in the region $74 leq Z leq 126$ and $92 leq N leq 230$, comprising 896 nuclides have been calculated using the Brownian shape-motion method. The emphasis is the region of superheavy nuclei. To show compatibility with earlier results the calculations are extended to include earlier studied regions. An island of asymmetric fission is obtained in the superheavy region, $106leq Zleq114$ and $162leq Nleq 176$, where the heavy fragment is found to be close to $^{208}$Pb and the light fragment adjusts accordingly. Most experimentally observed $alpha$-decay chains of superheavy nuclei with $Z > 113 $ terminate by spontaneous fission in our predicted region of asymmetric fission. In these cases, the pronounced large asymmetry is accompanied by a low TKE value compatible with measurements.
Experimental studies of fission induced in relativistic nuclear collisions show a systematic enhancement of the excitation energy of the primary fragments by a factor of ~ 2, before their decay by fission and other secondary fragments. Although it is widely accepted that by doubling the energies of the single-particle states may yield a better agreement with fission data, it does not prove fully successful, since it is not able to explain yields for light and intermediate mass fragments. State-of-the-art calculations are successful to describe the overall shape of the mass distribution of fragments, but fail within a factor of 2-10 for a large number of individual yields. Here, we present a novel approach that provides an account of the additional excitation of primary fragments due to final state interaction with the target. Our method is applied to the 238U + 208Pb reaction at 1 GeV/nucleon (and is applicable to other energies), an archetype case of fission studies with relativistic heavy ions, where we find that the large probability of energy absorption through final state excitation of giant resonances in the fragments can substantially modify the isotopic distribution of final fragments in a better agreement with data. Finally, we demonstrate that large angular momentum transfers to the projectile and to the primary fragments via the same mechanism imply the need of more elaborate theoretical methods than the presently existing ones.
122 - A.E. Lovell , A.T. Mohan , 2020
Probabilistic machine learning techniques can learn both complex relations between input features and output quantities of interest as well as take into account stochasticity or uncertainty within a data set. In this initial work, we explore the use of one such probabilistic network, the Mixture Density Network (MDN), to reproduce fission yields and their uncertainties. We study mass yields for the spontaneous fission of $^{252}$Cf, exploring the number of training samples needed for converged predictions, how different levels of uncertainty propagate from the training set to the MDN predictions, and how well physical constraints of the yields - such as normalization and symmetry - are upheld by the algorithm. Finally, we test the ability of the MDN to interpolate between and extrapolate beyond samples in the training set using energy-dependent mass yields for the neutron-induced fission on $^{235}$U. The MDN provides a reliable way to include and predict uncertainties and is a promising path forward for supplementing sparse sets of nuclear data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا