No Arabic abstract
We report results from a convection dynamo simulation of proto-neutron star (PNS), with a nuclear equation of state (EOS) and the initial hydrodynamic profile taken from a neutrino radiation-hydrodynamics simulation of a massive stellar core-collapse. A moderately-rotating PNS with the spin period of $170$ ms in the lepton-driven convection stage is focused. We find that large-scale flow and thermodynamic fields with north-south asymmetry develop in the turbulent flow, as a consequence of the convection in the central part of the PNS, which we call as a deep core convection. Intriguingly, even with such a moderate rotation, large-scale, $10^{15}$ G, magnetic field with dipole symmetry is spontaneously built up in the PNS. The turbulent electro-motive force arising from rotationally-constrained core convection is shown to play a key role in the large-scale dynamo. The large-scale structures organized in the PNS may impact the explosion dynamics of supernovae and subsequent evolution to the neutron stars.
A neutron star was first detected as a pulsar in 1967. It is one of the most mysterious compact objects in the universe, with a radius of the order of 10 km and masses that can reach two solar masses. In fact, neutron stars are star remnants, a kind of stellar zombies (they die, but do not disappear). In the last decades, astronomical observations yielded various contraints for the neutron star masses and finally, in 2017, a gravitational wave was detected (GW170817). Its source was identified as the merger of two neutron stars coming from NGC 4993, a galaxy 140 million light years away from us. The very same event was detected in $gamma$-ray, x-ray, UV, IR, radio frequency and even in the optical region of the electromagnetic spectrum, starting the new era of multi-messenger astronomy. To understand and describe neutron stars, an appropriate equation of state that satisfies bulk nuclear matter properties is necessary. GW170817 detection contributed with extra constraints to determine it. On the other hand, magnetars are the same sort of compact objects, but bearing much stronger magnetic fields that can reach up to 10$^{15}$ G on the surface as compared with the usual 10$^{12}$ G present in ordinary pulsars. While the description of ordinary pulsars is not completely established, describing magnetars poses extra challenges. In this paper, I give an overview on the history of neutron stars and on the development of nuclear models and show how the description of the tiny world of the nuclear physics can help the understanding of the cosmos, especially of the neutron stars.
The ohmic decay of magnetic fields in the crusts of neutron stars is generally believed to be governed by Hall drift which leads to what is known as a Hall cascade. Here we show that helical and fractionally helical magnetic fields undergo strong inverse cascading like in magnetohydrodynamics (MHD), but the magnetic energy decays more slowly with time $t$: $propto t^{-2/5}$ instead of $propto t^{-2/3}$ in MHD. Even for a nonhelical magnetic field there is a certain degree of inverse cascading for sufficiently strong magnetic fields. The inertial range scaling with wavenumber $k$ is compatible with earlier findings for the forced Hall cascade, i.e., proportional to $k^{-7/3}$, but in the decaying cases, the subinertial range spectrum steepens to a novel $k^5$ slope instead of the $k^4$ slope in MHD. The energy of the large-scale magnetic field can increase quadratically in time through inverse cascading. For helical fields, the energy dissipation is found to be inversely proportional to the large-scale magnetic field and proportional to the fifth power of the root-mean square (rms) magnetic field. For neutron star conditions with an rms magnetic field of a few times $10^{14},$G, the large-scale magnetic field might only be $10^{11},$G, while still producing magnetic dissipation of $10^{33},$erg$,$s$^{-1}$ for thousands of years, which could manifest itself through X-ray emission. Finally, it is shown that the conclusions from local unstratified models agree rather well with those from stratified models with boundaries.
Extending our recent studies of two-dimensional stellar convection to 3D, we compare three-dimensional hydrodynamic simulations to identically set-up two-dimensional simulations, for a realistic pre-main sequence star. We compare statistical quantities related to convective flows including: average velocity, vorticity, local enstrophy, and penetration depth beneath a convection zone. These statistics are produced during stationary, steady-state compressible convection in the stars convection zone. Our simulations with the MUSIC code confirm the common result that two-dimensional simulations of stellar convection have a higher magnitude of velocity on average than three-dimensional simulations. Boundary conditions and the extent of the spherical shell can affect the magnitude and variability of convective velocities. The difference between 2D and 3D velocities is dependent on these background points; in our simulations this can have an effect as large as the difference resulting from the dimensionality of the simulation. Nevertheless, radial velocities near the convective boundary are comparable in our 2D and 3D simulations. The average local enstrophy of the flow is lower for two-dimensional simulations than for three-dimensional simulations, indicating a different shape and structuring of 3D stellar convection. We perform a statistical analysis of the depth of convective penetration below the convection zone, using the model proposed in our recent study (Pratt et al. 2017). Here we analyze the convective penetration in three dimensional simulations, and compare the results to identically set-up 2D simulations. In 3D the penetration depth is as large as the penetration depth calculated from 2D simulations.
This paper presents the first systematic study of proto-neutron star (PNS) convection in three dimensions (3D) based on our latest numerical Fornax models of core-collapse supernova (CCSN). We confirm that PNS convection commonly occurs, and then quantify the basic physical characteristics of the convection. By virtue of the large number of long-term models, the diversity of PNS convective behavior emerges. We find that the vigor of PNS convection is not correlated with CCSN dynamics at large radii, but rather with the mass of PNS $-$ heavier masses are associated with stronger PNS convection. We find that PNS convection boosts the luminosities of $ u_{mu}$, $ u_{tau}$, $bar{ u}_{mu}$, and $bar{ u}_{tau}$ neutrinos, while the impact on other species is complex due to a competition of factors. Finally, we assess the consequent impact on CCSN dynamics and the potential for PNS convection to generate pulsar magnetic fields.
Young neutron stars (NSs) have magnetic fields $B$ in the range $10^{12}-10^{15}$ G, believed to be generated by dynamo action at birth. We argue that such a dynamo is actually too inefficient to explain the strongest of these fields. Dynamo action in the mature star is also unlikely. Instead we propose a promising new precession-driven dynamo and examine its basic properties, as well as arguing for a revised mean-field approach to NS dynamos. The precession-driven dynamo could also play a role in field generation in main-sequence stars.