Do you want to publish a course? Click here

Are Accelerometers for Activity Recognition a Dead-end?

97   0   0.0 ( 0 )
 Added by Catherine Tong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Accelerometer-based (and by extension other inertial sensors) research for Human Activity Recognition (HAR) is a dead-end. This sensor does not offer enough information for us to progress in the core domain of HAR - to recognize everyday activities from sensor data. Despite continued and prolonged efforts in improving feature engineering and machine learning models, the activities that we can recognize reliably have only expanded slightly and many of the same flaws of early models are still present today. Instead of relying on acceleration data, we should instead consider modalities with much richer information - a logical choice are images. With the rapid advance in image sensing hardware and modelling techniques, we believe that a widespread adoption of image sensors will open many opportunities for accurate and robust inference across a wide spectrum of human activities. In this paper, we make the case for imagers in place of accelerometers as the default sensor for human activity recognition. Our review of past works has led to the observation that progress in HAR had stalled, caused by our reliance on accelerometers. We further argue for the suitability of images for activity recognition by illustrating their richness of information and the marked progress in computer vision. Through a feasibility analysis, we find that deploying imagers and CNNs on device poses no substantial burden on modern mobile hardware. Overall, our work highlights the need to move away from accelerometers and calls for further exploration of using imagers for activity recognition.

rate research

Read More

A formal autism diagnosis is an inefficient and lengthy process. Families often have to wait years before receiving a diagnosis for their child; some may not receive one at all due to this delay. One approach to this problem is to use digital technologies to detect the presence of behaviors related to autism, which in aggregate may lead to remote and automated diagnostics. One of the strongest indicators of autism is stimming, which is a set of repetitive, self-stimulatory behaviors such as hand flapping, headbanging, and spinning. Using computer vision to detect hand flapping is especially difficult due to the sparsity of public training data in this space and excessive shakiness and motion in such data. Our work demonstrates a novel method that overcomes these issues: we use hand landmark detection over time as a feature representation which is then fed into a Long Short-Term Memory (LSTM) model. We achieve a validation accuracy and F1 Score of about 72% on detecting whether videos from the Self-Stimulatory Behaviour Dataset (SSBD) contain hand flapping or not. Our best model also predicts accurately on external videos we recorded of ourselves outside of the dataset it was trained on. This model uses less than 26,000 parameters, providing promise for fast deployment into ubiquitous and wearable digital settings for a remote autism diagnosis.
Over the last decades, most approaches proposed for handwritten digit string recognition (HDSR) have resorted to digit segmentation, which is dominated by heuristics, thereby imposing substantial constraints on the final performance. Few of them have been based on segmentation-free strategies where each pixel column has a potential cut location. Recently, segmentation-free strategies has added another perspective to the problem, leading to promising results. However, these strategies still show some limitations when dealing with a large number of touching digits. To bridge the resulting gap, in this paper, we hypothesize that a string of digits can be approached as a sequence of objects. We thus evaluate different end-to-end approaches to solve the HDSR problem, particularly in two verticals: those based on object-detection (e.g., Yolo and RetinaNet) and those based on sequence-to-sequence representation (CRNN). The main contribution of this work lies in its provision of a comprehensive comparison with a critical analysis of the above mentioned strategies on five benchmarks commonly used to assess HDSR, including the challenging Touching Pair dataset, NIST SD19, and two real-world datasets (CAR and CVL) proposed for the ICFHR 2014 competition on HDSR. Our results show that the Yolo model compares favorably against segmentation-free models with the advantage of having a shorter pipeline that minimizes the presence of heuristics-based models. It achieved a 97%, 96%, and 84% recognition rate on the NIST-SD19, CAR, and CVL datasets, respectively.
Rather than simply recognizing the action of a person individually, collective activity recognition aims to find out what a group of people is acting in a collective scene. Previ- ous state-of-the-art methods using hand-crafted potentials in conventional graphical model which can only define a limited range of relations. Thus, the complex structural de- pendencies among individuals involved in a collective sce- nario cannot be fully modeled. In this paper, we overcome these limitations by embedding latent variables into feature space and learning the feature mapping functions in a deep learning framework. The embeddings of latent variables build a global relation containing person-group interac- tions and richer contextual information by jointly modeling broader range of individuals. Besides, we assemble atten- tion mechanism during embedding for achieving more com- pact representations. We evaluate our method on three col- lective activity datasets, where we contribute a much larger dataset in this work. The proposed model has achieved clearly better performance as compared to the state-of-the- art methods in our experiments.
In this paper we address the task of recognizing assembly actions as a structure (e.g. a piece of furniture or a toy block tower) is built up from a set of primitive objects. Recognizing the full range of assembly actions requires perception at a level of spatial detail that has not been attempted in the action recognition literature to date. We extend the fine-grained activity recognition setting to address the task of assembly action recognition in its full generality by unifying assembly actions and kinematic structures within a single framework. We use this framework to develop a general method for recognizing assembly actions from observation sequences, along with observation features that take advantage of a spatial assemblys special structure. Finally, we evaluate our method empirically on two application-driven data sources: (1) An IKEA furniture-assembly dataset, and (2) A block-building dataset. On the first, our system recognizes assembly actions with an average framewise accuracy of 70% and an average normalized edit distance of 10%. On the second, which requires fine-grained geometric reasoning to distinguish between assemblies, our system attains an average normalized edit distance of 23% -- a relative improvement of 69% over prior work.
The HGR is a quite challenging task as its performance is influenced by various aspects such as illumination variations, cluttered backgrounds, spontaneous capture, etc. The conventional CNN networks for HGR are following two stage pipeline to deal with the various challenges: complex signs, illumination variations, complex and cluttered backgrounds. The existing approaches needs expert expertise as well as auxiliary computation at stage 1 to remove the complexities from the input images. Therefore, in this paper, we proposes an novel end-to-end compact CNN framework: fine grained feature attentive network for hand gesture recognition (Fit-Hand) to solve the challenges as discussed above. The pipeline of the proposed architecture consists of two main units: FineFeat module and dilated convolutional (Conv) layer. The FineFeat module extracts fine grained feature maps by employing attention mechanism over multiscale receptive fields. The attention mechanism is introduced to capture effective features by enlarging the average behaviour of multi-scale responses. Moreover, dilated convolution provides global features of hand gestures through a larger receptive field. In addition, integrated layer is also utilized to combine the features of FineFeat module and dilated layer which enhances the discriminability of the network by capturing complementary context information of hand postures. The effectiveness of Fit- Hand is evaluated by using subject dependent (SD) and subject independent (SI) validation setup over seven benchmark datasets: MUGD-I, MUGD-II, MUGD-III, MUGD-IV, MUGD-V, Finger Spelling and OUHANDS, respectively. Furthermore, to investigate the deep insights of the proposed Fit-Hand framework, we performed ten ablation study.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا